Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)
Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)
nên \(B\vdots4\).
`#3107.101107`
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)
\(=4\left(3+3^3+3^5+3^7\right)\)
Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$
`\Rightarrow B \vdots 4`
Vậy, `B \vdots 4.`
2^0+2^1=1+2=3 CHIA HẾT CHO 3 NHƯ VẬY TỔNG HAI SỐ HẠNG LIÊN TIẾP CHIA HẾT CHO 3
từ 31 đến 40 có 40-31=9+1=10 số hạng chẵn
=> ghép số hạng => 5 cặp chia hết cho 3
có 5 cặp viết luôn ra cho bạn
\(A=3.2^{31}+3.2^{33}+3.2^{35}+3.2^{37}+3.2^{39}=3.\left(2^{31}+2^{33}+2^{35}+2^{37}+2^{39}\right)\) tất nhiên chia hết cho 3
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)
Ta có: S = 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39
S = (3 + 32 + 33) + (34 + 35 + 36) + (37 + 38 + 39)
S = 39 + 33(3 + 32 + 33) + 36(3 + 32 + 33)
S = 39 + 33.39 + 36.39
S = 39.(1 + 33 + 36) \(⋮\)-39 (vì 39 \(⋮\)-39)