K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1) 
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*) 
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co: 
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] = 
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4) 
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24 
 => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*). 

8 tháng 10 2017

B1: Giải:

\(n^4+6n^3+11n^2+6n\)

= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)

= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)

= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)

= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)

= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)

= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)

= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)

Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)

Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.

Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

15 tháng 7 2016

a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19

Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)

Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19

 

15 tháng 7 2016

Muộn rồi b chiều tớ hứa là sẽ làm 4h30' chiều

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 

    

16 tháng 6 2015

\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)

\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)

\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)

\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)

(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24

(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24

biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24