Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(a+b\right)^2=4ab\)<=> \(a^2+b^2+2ab=4ab\)
<=> \(a^2-2ab+b^2=0\)
<=> \(\left(a-b\right)^2=0\)=> a=b (đpcm)
b) Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
<=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
<=> \(a^2y^2+b^2x^2-2axby=0\)
<=>\(\left(ay-bx\right)^2=0\)
<=>ay=bx(đpcm)
a) VP=(a-b)2+4ab
=a2-2ab+b2+4ab
=a2+b2+2ab
=(a+b)2=VT
Vậy (a+b)^2 = (a-b)^2 +4ab
b) VP=(a+b)2-4ab
=a2+2ab+b2-4ab
=a2-2ab+b2
=(a-b)2=VT
Vậy (a-b)^2 = (a+b)^2 - 4ab
c)
VP=(ax-by)2+(ay+bx)2
=a2x2-2axby+b2y2+a2y2+2axby+b2x2
=a2x2+b2y2+a2y2+b2x2
=(a2x2+b2x2)+(b2y2+a2y2)
=x2.(a2+b2)+y2.(a2+b2)
=(a2+b2)(a2+y2)=VT
Vậy ( a^2 + b^2 ).(x^2 +y^2) = (ax - by)^2 +(ay+bx)^2
Ta có:
VT = (x2 + y2)(a2 + b2)
= x2a2 + x2b2 + y2a2 + y2b2
= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)
= (ax + by)2 + (ay - bx)2
=> VT = VP => đpcm
Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
Vậy ta có điều phải chứng minh.
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)
Trả lời:
(a2 + b2 ) ( x2 + y2 ) - (ax + by )2
= a2x2 + a2y2 + b2x2 + b2y2 - [ ( ax )2 + 2.ax.by + ( by )2 ]
= a2x2 + a2y2 + b2x2 + b2y2 - ( a2x2 + 2axby + b2y2 )
= a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2
= a2y2 - 2axby + b2x2
= ( ay )2 - 2aybx + ( bx )2
= ( ay - bx )2 (đpcm)
1. \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(VP=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
\(\Rightarrow VT=VP\)
2. \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
\(VP=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4+a^2b^2-b^2a^2-b^4=a^4-b^4\)
\(\Rightarrow VT=VP\)
3. \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(VP=\left(ax-by\right)^2+\left(bx+ay\right)^2=a^2x^2-2axby+b^2y^2+b^2x^2+2bxay+a^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Rightarrow VT=VP\)
a) \(\left(a+b\right)^2=a^2+2ab+b^2\left(1\right)\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2-2ab+4ab+b^2=a^2+2ab+b^2\left(2\right)\)
Từ (1) và (2) => đpcm
b) \(\left(a-b\right)^2=a^2-2ab+b^2\left(3\right)\)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2+2ab-4ab+b^2=a^2-2ab+b^2\left(4\right)\)
Từ (3) và (4) =>đpcm
c) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\left(5\right)\)
\(\left(ax-by\right)^2+\left(ay+bx\right)^2=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\left(6\right)\)
Từ (5) và (6) =>đpcm