Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
Ta có :
\(10\le n\le99\)
\(\Rightarrow21\le2n+1\le201\)
\(\Rightarrow2n+1\) là số chính phương lẻ (1)
\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)
\(\Rightarrow dpcm\)
\(\Rightarrow n=40⋮40\Rightarrow dpcm\)
\(=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)
(Đặt thừa số chung nhẩm nghiệm đa thức bậc 2 có 1 nghiệm là -1, thực hiện phép chia đa thức bậc 2 cho n+1)
\(=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Ta nhận thấy n(n+1)(n+2) và (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp bao giờ cũng có ít nhất 1 số chẵn => hai tích trên chia hết cho 2 => Tổng 2 tích trên chia hết cho 2 nên đa thức đã cho chia hết cho 2
Chứng minh bài toán phụ 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2
+ Nếu a chia hết cho 3 thì bài toán đúng
+ Nếu a chia 3 dư 1 thì a=3k+1 => a+2 = 3k+1+2=3k+3 chia hết cho 3
+ Nếu a chia 3 dư 2 thì a=3k+2 => a+1=3k+2+1=3k+3 chia hết cho 3
=> 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
Áp dụng vào bài toán thì 2 tích trên chia hết cho 3 => tổng 2 tích chia hết cho 3 nên đa thức đã cho chia hết cho 3
Đa thức đã cho đồng thời chia hết cho cả 2 và 3 nên chia hết cho 2.3=6
xin lỗi nha, bạn giải hình như là cách lớp lớn, mình chẳng hiểu gì hết. Sorry nhưng mình không chọn bạn được, xin lỗi nha!!!
a) \(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{14}\cdot2\cdot33⋮66\)
b) \(3^{m+2}-2^{n+4}+3^m+2^n\)
\(=3^m\cdot9+3-2^n\left(2^4-1\right)\)
\(=3^m\cdot10-2^{n-1}\cdot30\)
\(=30\left(3^{m-1}-2^{n-1}\right)⋮30\)
a) \(A=16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33=2^{14}\cdot66⋮66\)
b) Sửa đề
\(B=3^{n+2}-2^{n+4}+3^n+2^n=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)=3^n\cdot10-2^n\cdot15\\ =3^{n-1}\cdot30-2^{n-1}\cdot30=30\left(3^{n-1}-2^{n-1}\right)⋮30\)
(với mọi n nguyên dương)