Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé
a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)
b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)
\(3^{1998}+5^{1998}=27^{666}+25^{999}\equiv1^{666}+\left(-1\right)^{999}\equiv1-1\equiv0\left(mod13\right)\)
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
3^1998+5^1998
= (3^3)^666+(5^2)^999 đồng dư với 1^666+(-1)^999= 1+(-1)=0(mod 13)
Vậy số dư của 3^1998+5^1998 khi chia cho 13 là 0.
Câu 1:
Ta có:
\(n=11k+4\)
\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)
Vì \(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên
\(121k^2+88k+16\) chia cho 11 dư 5
Do đó \(n^2\) chia cho 11 dư 5.
Câu 2:
Ta có:
\(n=13k+7\)
\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)
\(=169k^2+182k+49-10=169k^2+182k+39\)
Vì \(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.
Do đó \(n^2-10\) chia hết cho 13.
Chúc bạn học tốt!!!
Ta có: \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26\)
Vì \(26⋮13\Rightarrow5^{1998}.26⋮13\)
hay \(5^{2000}+5^{1998}⋮13\)
TK NHOA!!
Ta có :
\(5^{2000}+5^{1998}\)
\(=5^{1998}\times5^2+5^{1998}\)
\(=5^{1998}\times\left(5^2+1\right)\)
\(=5^{1998}\times26\)
\(=5^{1998}\times13\times2\)
Vậy \(5^{2000}+5^{1998}⋮13\)
_Chúc bạn học tốt_