Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
\(\left(x^2+6x+8\right)\left(x^2+14x+48\right)+16\)
\(=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x\right)^2+40\left(x^2+10x\right)+400\)
\(=\left(x^2+10x+20\right)^2\)
\(x^2+4x+3=x^2+3x+x+3=\left(x^2+3x\right)+\left(x+3\right)=x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x+1\right)\)
m.n giúp mk câu này vs ạ
(\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}+\dfrac{16}{4-x^2}\)) : (\(\dfrac{4}{2-x}-\dfrac{8}{2x-x^2}\))
\(=x^3\left(x+2\right)-x\left(x+2\right)\)
\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)
Vì đây là tích của bốn số nguyên liên tiếp
nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)
Giải:
a) \(x^2+xy+y^2+1\)
\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)
Vậy ...
Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi
1.BĐT Cauchy
\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)
\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )
2.BĐT Bunhiacopxki
\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)
3.BĐT Mincopxki
\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)
4.BĐT Chebyshev
Với A>B, x>y thì
\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)
Vs 3 sô thì bên vế phải thay 2 bằng 3
5.BĐT Benuli
\(\left(1+h\right)^n\ge1+nh\)
6.BĐT Holder
Với a,b,c,x,y,z,m,n,p là sô thực dương
\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)
7.BĐT Sơ-vác-sơ
\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)
12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)
14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )
15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)
16. \(a^2+b^2+c^2\ge ab+ac+bc\)
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
\(x^2-6x+11=\left(x^2-6x+9\right)+2\)\(=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Mặt khác 2 > 0 nên \(\left(x-3\right)^2+2>0\Leftrightarrow x^2-6x+11>0\)\(\forall x\inℝ\)
\(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\)
Với mọi \(x\) ta có: \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2>0,\forall x\)
Vậy \(x^2-6x+11>0\forall x\)