K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\)

\(=\left(x^2-7x\right)^2+18\left(x^2-7x\right)+81\)

\(=\left(x^2-7x+9\right)^2>=0\)

b: Vì A=(x^2-7x+9)^2

nên A là số chính phương

2 tháng 8 2019

từ bt trên ta đc

B=(xy)^2+x^2+y^2+1-x^2-y^2+25+16

B=(xy)^2+42

mà (xy)^2>=0

suy ra (xy)^2+42>=42

suy ra B >=42

dấu = xảy ra khi x=0 hoặc y=0

1: \(x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

2: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

3: 

\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)

\(=169^2-2\cdot60^2=21361\)

12 tháng 4 2018

xét hiệu

\(\dfrac{x+y}{xy}-\dfrac{4}{\left(x+y\right)}\)

<=> \(\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}-\dfrac{4xy}{xy\left(x+y\right)}\)

<=> (x+y)2 -4xy

<=> x2+y2+2xy-4xy

<=> x2+y2-2xy

<=> (x-y)2 ≥ 0 (luôn đúng )

=> đpcm

12 tháng 4 2018

cảm ơn bạn nhiều yeu

20 tháng 4 2018

\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6>0\forall x\)

20 tháng 4 2018

có thể trình bày cả bài ra đc k ạ

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:

a) Xét hiệu:

\(a^4+b^4-(a^3b+ab^3)\)

\(=(a^4-a^3b)-(ab^3-b^4)\)

\(=a^3(a-b)-b^3(a-b)=(a-b)(a^3-b^3)=(a-b)(a-b)(a^2+ab+b^2)\)

\(=(a-b)^2(a^2+ab+b^2)\)

Ta thấy: \((a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)

\(a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow a^4+b^4-(a^3b+ab^3)=(a-b)^2(a^2+ab+b^2)\geq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow a^4+b^4\geq ab^3+a^3b\) với mọi $a,b\in\mathbb{R}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b$

b)

\((x-3)(x-4)(x-5)(x-6)+3\)

\(=[(x-3)(x-6)][(x-4)(x-5)]+3\)

\(=(x^2-9x+18)(x^2-9x+20)+3\)

\(=a(a+2)+3\) (đặt \(x^2-9x+18=a)\)

\(=a^2+2a+3=(a+1)^2+2\geq 2>0, \forall a\in\mathbb{R}\)

hay \((x-3)(x-4)(x-5)(x-6)+3>0, \forall x\in\mathbb{R}\) (đpcm)

2 tháng 4 2019

a) Xét hiệu:

a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)

=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)

=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)

=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)

Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R

a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R

⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R

⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R

Ta có đpcm.

Dấu "=" xảy ra khi a=ba=b

b)

(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3

=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3

=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3

=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)

=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R

hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)

a) Xét hiệu:

a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)

=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)

=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)

=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)

Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R

a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R

⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R

⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R

Ta có đpcm.

Dấu "=" xảy ra khi a=ba=b

b)

(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3

=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3

=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3

=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)

=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R

hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)v

16 tháng 8 2018

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)