Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hello l am Duong quang minh, nice to meet you, how old are you, l am nine how do you spell your name ,m-i-n-h
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
n3 - 3n2 - n + 21
= n(n2 - 1) - 3(n2 - 7)
= n(n - 1)(n + 1) - 3(n2 - 7)
n lẻ => n2 lẻ => n2 + 7 chẵn => n2 + 7 chia hết cho 2
=> - 3(n2 - 7) chia hết cho 6 (chia hết cho 2 và 3)
mà n(n - 1)(n + 1) chia hết cho 6 (tích 3 số nguyên liên tiếp)
Vậy n3 - 3n2 - n + 21 chia hết cho 6 vs mọi n là số nguyên lẻ (đpcm)
Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
=> P/s tối giản
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)
Từ \(\left(1\right)\): \(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Rightarrow n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow n^4+2n^2+1⋮d\)
\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))
Vì \(d>0\)\(\Rightarrow d=1\)
\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên
Gọi d là ƯC(n3+2n;n4+3n2+1)
n3+2n chia hết d;n4+3n2+1 chia hết d
n(n3+2n) chia hết d ; n4+3n2+1 chia hết d
n4+2n2 chia hết d; n4+3n2+1 chia hết d
(n4+3n2+1) - (n4+2n2) chia hết d
n2+1 chia hết d
n(n2+1) chia hết d
n3+n chia hết d
(n3+2n)-(n3+n) chia hết d
n chia hết d
n2 chia hết d
(n2+1)-(n2) chia hết cho d
1 chia hết d
d=1
PS tối giản
Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :
+) \(n^3+2n⋮d\)
\(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\) (1)
Và \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)
\(n^3-3n^2+2n\)
\(=n^3-n^2-2n^2+2n\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)