K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)

Ta có : \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\Leftrightarrow\left(2n+1\right)^2>2n\left(2n+2\right)\)\(\Leftrightarrow\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

Mà \(\hept{\begin{cases}\frac{1}{3^2}< \frac{1}{2.4}\\\frac{1}{5^2}< \frac{1}{4.6}\\\frac{1}{7^2}< \frac{1}{6.8}\end{cases}}\)

\(...............\)

\(\frac{1}{\left(2n+1\right)^2}< \frac{1}{2n\left(2n+2\right)}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n\left(2n+2\right)}=B\)

\(=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2n+2-2n}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\)

\(=\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\Rightarrow B< \frac{1}{4}\)

\(\Rightarrow A< B< \frac{1}{4}\Rightarrow A< \frac{1}{4}\) hay đpcm

14 tháng 12 2018

Đặt \(T=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(2n-1\right)n}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}-\frac{1}{n}\)

\(=\frac{1}{2}-\frac{1}{n}< \frac{1}{2}^{\left(đpcm\right)}\)  (không chắc nha)

14 tháng 12 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Ta có: \(\frac{1}{1}=\frac{1}{1},\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},....,\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

=> \(A< \frac{1}{2^2}.\left[1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right]\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\frac{1}{2^2}.\left(2-\frac{1}{n+1}\right)=\frac{1}{2}-\frac{1}{4.\left(n+1\right)}\)

p/s: bài tớ ko bt đúng ko, nhưng tth bn làm vậy sẽ ko có quy luật, đoạn này

nếu cứ theo quy luật, tiếp tục sẽ ntn:\(\frac{1}{6^2}< \frac{1}{5.6};\frac{1}{8^2}< \frac{1}{6.7};\frac{1}{10^2}< \frac{1}{7.8}\)

1 tháng 6 2018

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

1 tháng 6 2018

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

26 tháng 9

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

12 tháng 3 2017

a. Ta có: \(\frac{1}{2^2}\)\(\frac{1}{1.3}\)

\(\frac{1}{4^2}\)< 1/(3.5)

1/(6^2) <1/(5.7)

...

1/(2n)^2 < 1/(2n-1)(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 1/(1.3) +...+1/(2n-1)(2n+1)

=> 2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < (1/1 - 1/3 +1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-1) - 1/(2n+1)

=>2(1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2) < 1 - 1/(2n+1) = 2n/(2n+1)

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 < 2n/(2n+1) . 1/2

Vì 2n/2n+1 < 1 =>  2n/(2n+1) . 1/2 < 1/2

=> 1/2^2 +1/4^2 + 1/6^2 +...+1/(2n)^2 <1/2

 Câu b tương tự

26 tháng 9

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

\(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

\(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

1 tháng 12 2016

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\) \(< \frac{1}{4}\)

7 tháng 5 2017

bài này tớ chịu!

14 tháng 1 2019

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1-\frac{1}{2}=\frac{1}{2}< \frac{2}{3}\)

                                         đpcm