K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

Đề bài thiếu giả thiết \(x,y,z\) không đồng thời bằng nhau. Ví dụ lấy \(x=y=z=2\) sẽ thỏa mãn giả thiết nhưng không suy ra được \(xyz=1\).

Đầu tiên ta thấy \(x,y,z>0.\)  Từ giả thiết ta có

\(\sqrt{x}+\frac{1}{\sqrt{y}}=\sqrt{y}+\frac{1}{\sqrt{z}}\to\sqrt{x}-\sqrt{y}=\frac{\sqrt{y}-\sqrt{z}}{\sqrt{yz}},\)
\(\sqrt{y}+\frac{1}{\sqrt{z}}=\sqrt{z}+\frac{1}{\sqrt{x}}\to\sqrt{y}-\sqrt{z}=\frac{\sqrt{z}-\sqrt{x}}{\sqrt{zx}},\)

\(\sqrt{z}+\frac{1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{y}}\to\sqrt{z}-\sqrt{x}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}.\)

Nhân ba đẳng thức lại cho ta \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}{xyz}\).

Vì ba số không đồng thời bằng nhau nên ta suy ra các sẽ đôi một phân biệt (Vì nếu không chẳng hạn x=y thì y=z do đó cả ba số bằng nhau). Thành thử ta được \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)\ne0\)  nên \(\frac{1}{xyz}=1\to xyz=1.\)

20 tháng 8 2015

Xem ở đây nhé:  http://olm.vn/hoi-dap/question/174095.html

9 tháng 4 2021

ĐỊT MẸ

9 tháng 8 2016

\(\sqrt{z}=\sqrt{x}+\sqrt{y}\Rightarrow z=x+y+2\sqrt{xy}\Rightarrow x+y-z=-2\sqrt{xy}\)

\(\sqrt{y}=\sqrt{z}-\sqrt{x}\Rightarrow y=x+z-2\sqrt{zx}\Rightarrow z+x-y=2\sqrt{zx}\)

\(\sqrt{x}=\sqrt{z}-\sqrt{y}\Rightarrow x=y+z-2\sqrt{yz}\Rightarrow y+z-x=2\sqrt{yz}\)

\(\frac{1}{y+z-x}+\frac{1}{z+x-y}+\frac{1}{x+y-z}=\frac{1}{2}\left(\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{yz}}-\frac{1}{\sqrt{xy}}\right)\)

\(=\frac{1}{2}.\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}=0\)

29 tháng 2 2020

BĐT <=> \(\sqrt{\frac{x+yz}{xyz}}+\sqrt{\frac{y+xz}{xyz}}+\sqrt{\frac{z+xy}{xyz}}\ge1+\sqrt{\frac{1}{xy}}+\sqrt{\frac{1}{yz}}+\sqrt{\frac{1}{xz}}\)

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)

Khi đó \(a+b+c=1\)

BĐT <=>\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

Ta có \(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)

Khi đó \(VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=VP\)(ĐPCM)

Dấu bằng xảy ra khi x=y=z=3

1 tháng 3 2020

BĐT cho tương đương với 

\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Với \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z};a+b+c=1\)

Ta có:

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}\)

\(=\sqrt{a^2+a\left(b+c\right)+bc}\ge\sqrt{a^2+2a\sqrt{bc}+bc}=a+\sqrt{bc}\)

Tương tự

\(\sqrt{b+ca}\ge b+\sqrt{ca};\sqrt{c+ab}\ge c+\sqrt{ab}\)

Từ đó ta có đpcm

Dấu "=" xảy ra khi x=y=z=3