Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 315 - 96
= 315 - (32)6
= 315 - 32.6
= 315 - 312
= 312.(33 - 1)
= 312.(27 - 1)
= 312.26
= 312.13.2 \(⋮\)13
=> 315 - 96 \(⋮\)13 (ĐPCM)
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39
CMR:\(\dfrac{\left(3^4-3^3\right)^3}{27^3}⋮2\)
\(=\dfrac{\left(3^3.3-3^3\right)^3}{\left(3^3\right)^3}\)
\(=\dfrac{\left[3^3\left(3-1\right)\right]^3}{3^9}\)
\(=\dfrac{3^9\left(3-1\right)^3}{3^9}\)
\(=\left(3-1\right)^3\)
\(=8\)
Ta thấy: \(8⋮2\)
Vì vậy biểu thức \(\dfrac{\left(3^4-3^3\right)^3}{27^3}⋮2\)
Bài làm:
a) \(a^2-a=a\left(a-1\right)\)
Vì a là số nguyên
=> a ; a-1 là 2 số nguyên liên tiếp
Vì trong 2 số nguyên liên tiếp tồn tại 1 số chẵn ( chia hết cho 2)
=> a(a-1) chia hết cho 2
=> \(a^2-a⋮2\)
Sai sai nên sửa đề:
b) \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)
Vì đó là tích 3 số nguyên liên tiếp và trong 3 số đó luôn tồn tại 1 số chia hết cho 3
=> (a-1)a(a+1) chia hết cho 3
=> \(a^3-a⋮3\)
c) \(a^5-a=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)
\(=\left(a-1\right)a\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Vì (a-2)(a-1)a(a+1)(a+2) là tích 5 số nguyên liên tiếp và trong 5 số đó luôn tồn tại 1 số chia hết cho 5
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Mà 5(a-1)a(a+1) chia hết cho 5
=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
+) Ta có a2 - a = a( a - 1 )
Vì a , a - 1 là hai số nguyên liên tiếp => Ít nhất 1 trong 2 số chia hết cho 2
=> a( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2 ( đpcm )
+) Ta có a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) ( sửa 3 thành a may ra tính được )
Vì a ; a - 1 ; a + 1 là 3 số nguyên liên tiếp => Ít nhất 1 trong 3 số chia hết cho 3
=> a( a - 1 )( a + 1 ) chia hết cho 3 hay a3 - a chia hết cho 3 ( đpcm )
S = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)
S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307
S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307
Có tất cả số hạng ở biểu thức S là:
(18-1):1+1=18(số)
Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng
S=17+17^2+17^3+.......+17^18
S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)
S=17.(1+17+17^2)+........+17^16.(1+17+17^2)
S=17.307+.............+17^16.307
S=307.(17+........+17^16) chia hết cho 307
Vậy S chia hết cho 307
~shizadon~