Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(-m\right)^2-4\left(-2m^2+3m-2\right)\)
\(=m^2+8m^2-12m+8\)
\(=9m^2-12m+8\)
\(=9m^2-12m+4+4=\left(3m-2\right)^2+4>0\)
Do đó: PHương trình luôn có hai nghiệm phân biệt
1. Với m=5 thì (1) có dạng
\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
2. Nếu m=0 thì (1) trở thành
\(-5x-5=0\Leftrightarrow x=-1\)
Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:
\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)
Nên phương trình (1) luôn có nghiệm với mọi m
a. Bạn tự giải
b.
Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)
Với \(m\ne0\)
\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m
1: Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8
=(2m-4)^2+8>=8>0 với mọi m
=>PT luôn có 2 nghiệm pb
2: Để pt có hai nghiệm trái dấu thì 2m-5<0
=>m<5/2
3: A=(x1+x2)^2-2x1x2
=(2m-2)^2-2(2m-5)
=4m^2-8m+4-4m+10
=4m^2-12m+14
=4(m^2-3m+7/2)
=4(m^2-2m*3/2+9/4+5/4)
=4(m-3/2)^2+5>=5
Dấu = xảy ra khi m=3/2
`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`
`=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`
`=>` Ptr có `2` nghiệm phân biệt `AA m`
`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`
`<=>2m-5 < 0<=>m < 5/2`
`3) AA m` ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`
Ta có: `A=x_1 ^2+x_2 ^2`
`<=>A=(x_1+x_2)^2-2x_1.x_2`
`<=>A=(2m-2)^2-2(2m-5)`
`<=>A=4m^2-8m+4-4m+10`
`<=>A=4m^2-12m+14`
`<=>A=(2m-3)^2+5 >= 5 AA m`
`=>A_[mi n]=5`
Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
a: Khi m=5 thì (1) sẽ là: x^2+5x+4=0
=>x=-1; x=-4
b: Sửa đề: Q=x1^2+x2^2-4x1-4x2
Q=(x1+x2)^2-2x1x2-4(x1+x2)
=m^2-2(m-1)-4(-m)
=m^2-2m+2+4m
=m^2+2m+2=(m+1)^2+1>=1
Dấu = xảy ra khi m=-1
a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)
Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
a) Đây là phương trình bậc 2 ẩn x có
Δ = (-m)2 - 4(m-1)
= m2-4m+4 = (m-2)2
Do (m-2)2≥0 ∀m => Δ≥0 ∀m
Vậy phương trình luôn có nghiệm với mọi m.
b) Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)
\(x_1=2x_2\left(3\right)\)
Từ (1)(3) ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1=2x_2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x_2=m\\x_1=2x_2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x_2=\dfrac{m}{3}\\x_1=\dfrac{2m}{3}\end{matrix}\right.\)
Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:
\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)
<=> 2m2 = 9(m - 1)
<=> 2m2 - 9m + 9 = 0
<=> (m - 3)(2m - 3) = 0
<=> \(\left[{}\begin{matrix}m-3=0\\2m-3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}m=3\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy tại m ∈\(\left\{3;\dfrac{3}{2}\right\}\) thì hai nghiệm của phương trình thoả mãn x1=2x2
a) Ta có:
\(\Delta=b^2-4ac=\left(-m\right)^2-4.1.\left(m-1\right)\)
\(=m^2-4m+4=\left(m-2\right)^2\ge0\) với mọi m
Vậy phương trình đã cho luôn có nghiệm với mọi m
b) Do phương trình luôn có nghiệm với mọi m
Theo định lý Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{1}=m-1\left(2\right)\end{matrix}\right.\)
Mà \(x_1=2x_2\), thay vào (1) ta có:
\(2x_2+x_2=3\Leftrightarrow3x_2=m\Leftrightarrow x_2=\dfrac{m}{3}\)
\(\Rightarrow x_1=2x_2=\dfrac{2m}{3}\)
Thay \(x_1=\dfrac{2m}{3};x_2=\dfrac{m}{3}\) vào (2) ta có:
\(\dfrac{2m}{3}.\dfrac{m}{3}=m-1\)
\(\Leftrightarrow2m^2=9m-9\)
\(\Leftrightarrow2m^2-9m+9=0\) (*)
\(\Delta_m=\left(-9\right)^2-4.2.9=9\)
Phương trình (*) có 2 nghiệm:
\(m_1=\dfrac{-\left(-9\right)+\sqrt{9}}{2.2}=3\)
\(m_2=\dfrac{-\left(-9\right)-\sqrt{9}}{2.2}=\dfrac{3}{2}\)
Vậy \(m=3;m=\dfrac{3}{2}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1=2x_2\)
cho tam giac ABC nội tiếp đường tròn tâm 0 gọi D là điểm chính giữa của cung nhỏ BC 2 tiếp tuyến C VÀ D với dg tròn tâm o cắt nhau tại E gọi P Q lần lượt là các giao điểm của các cặp dg thẳng AB và CD AD và
CMR BC//DE
tứ giác CODE APQC nội tiếp đường tròn
tìm điều kiện của tam giác ABC để góc AQP=90