\(\frac{a}{b}=\frac{b}{c}thì\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Ta có a/b =b/c 

=> a^2/b^2=a/b.a/b= a/b.b/c=a/c(1)

Lại có a/b=b/c

=> a^2/b^2=b^2/c^2=a^2+b^2  /  b^2+c^2 (t/c dãy tỉ số = nhau) (2)

Từ (1),(2) => a/c=a^2+b^2  /  b^2+c^2

4 tháng 12 2019

Ta có \(\frac{a}{b}=\frac{b}{c}\)=> \(\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2\)

                             => \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)mà \(\frac{a}{b}=\frac{b}{c}\)
                            => \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

16 tháng 6 2016

1, 

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

<=> (a - 2)(b + 3) = (a + 2)(b - 3)

<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6

<=> 3a - 2b = -3a + 2b

<=> 6a = 4b

<=> 3a = 2b 

<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)

16 tháng 6 2016

2,

Có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)

=> bz - cy = 0

=> bz = cy

=> \(\frac{b}{y}=\frac{c}{z}\)(1)

=> cx - az = 0

=> cx = az

=> \(\frac{c}{z}=\frac{a}{x}\)(2)

Từ (1) và (2)

=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)

20 tháng 12 2019

\(\frac{a}{b}=\frac{b}{c}\)\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

mà \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

29 tháng 7 2017

\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

\(\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)

27 tháng 12 2020

Ta có :\(\frac{a}{b}=\frac{b}{c}\)

=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(\text{đpcm}\right)\)

27 tháng 12 2020

Cho xem đáp án nhé

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

2 tháng 5 2017

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)

2 tháng 5 2017

Đặt \(\frac{a}{b}=\frac{b}{c}=k\) =>\(\hept{\begin{cases}a=bk\\b=ck\end{cases}}\)                                                                                                                                                          Do đó:  \(\frac{a}{c}=\frac{bk}{c}=\frac{ck.c}{c}=k^2\) (1)                                                                                                                                              \(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2k^2+b^2}{c^2k^2+c^2}=\frac{b^2.\left(k^2+1\right)}{c^2.\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=\frac{c^2k^2}{c^2}=k^2\) (2)          Từ (1) và (2) suy ra: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

5 tháng 11 2016

đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a=bk c=dk 

ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(2)

từ (1:2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

5 tháng 11 2016

Cái này dựa trên mạng dác dặt bút làm lắm nha

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k;c=d.k\)

Ta có \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)

Ta lại có \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2.b^2+b^2}{k^2.d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)ta được

\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

10 tháng 10 2020

tham khảo trên vietjack.com í