K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

Nguyễn Thị Linh Chi: Em có cách khác ạ. (cách này em làm trên lớp thường ngày.Và cũng khác đơn giản ạ)

ĐK: b,d ≠ 0 ; b≠d

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\).Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=kc\\b=kd\end{cases}}\).Thay vào:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(kc+kd\right)^2}{k^2c^2+k^2d^2}=\frac{\left[k\left(c+d\right)\right]^2}{k^2\left(c^2+d^2\right)}=\frac{\left(c+d\right)^2}{c^2+d^2}^{\left(đpcm\right)}\) 

12 tháng 11 2018

\(a^2+b^2\)nha mn

12 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(dpcm\right)\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Vậy ...

10 tháng 11 2018

Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

          \(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

10 tháng 11 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{\left(bk\right)^2-b^2}{kb^2}=\frac{\left(dk\right)^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2.k^2-b^2}{kb^2}=\frac{d^2.k^2-d^2}{kd^2}\)

\(\Rightarrow\frac{b^2\left(k^2-1\right)}{kb^2}=\frac{d^2\left(k^2-1\right)}{kd^2}\)

\(\Rightarrow\frac{k^2-1}{k}=\frac{k^2-1}{k}\left(đpcm\right)\)

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)

11 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\frac{a^{1994}}{b^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)(1)

\(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(2)

từ (1) và (2) => \(\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\left(đpcm\right)\)

\(\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Ta có : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\left(đpcm\right)\)

10 tháng 11 2018

Giải :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)(1)

                       \(\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)

Từ (1) và (2), suy ra : \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

10 tháng 11 2018

Bn chỉ cần áp dụng t/c dãy tỉ số bằng nhau cho tổng và hiệu là ra nhé

29 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) Ta có: 

\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)

b) Ta có:

\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)

c) Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)