Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh: Số có dạng \(n^6-n^4+2n^3+2n^2\) với \(n\inℕ\) và \(n>1\) không phải là số chính phương.
\(=n^2\left(n^4-n^2+2n+2\right)=\)
\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)
\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)
\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)
\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)
\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương
\(\Rightarrow n^2-2n+2\) Phải là số chính phương
Ta có
\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)
Ta có
\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1
\(\Rightarrow n^2-2n+2< n^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)
Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương
=> Biểu thức đề bài đã cho không phải là số chính phương
dễ mà chứng minh nó chia hết cho 2 nhưng không chia hét cho4
#)Giải :
a)Theo đầu bài, ta có : \(n=a^2+b^2\)
\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)
\(\Rightarrowđpcm\)
b)Theo đầu bài, ta có : \(2n=a^2+b^2\)
\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)
\(\Rightarrowđpcm\)
ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương
có n^2+1=a^2khi và chỉ khi n=0