K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

\(9=3^2\)

\(min=1,min=2\left(\varnothing\right)\)

\(min=3\Rightarrow3^2+3+1=3^2+4\Leftrightarrow3^2⋮9\)\(;\)\(4⋮̸9\)

\(\Rightarrow n^2+n+1⋮̸9\)

16 tháng 10 2020

Theo mình nghĩ đề cần thêm điều kiện n là STN

Bài làm:

Xét n có 3 dạng sau: 3k ; 3k+1 ; 3k+2

Nếu \(n=3k\) khi đó:

\(n^2+n+1=9k^2+3k+1=3k\left(3k+1\right)+1\) không chia hết cho 3

=> BT không chia hết cho 9

Nếu \(n=3k+1\) khi đó:

\(n^2+n+1=\left(3k+1\right)^2+3k+1+1=9k^2+6k+1+3k+2\)

\(=9k^2+9k+3=9\left(k^2+k\right)+3\) không chia hết cho 9

Nếu \(n=3k+2\) khi đó:

\(n^2+n+1=\left(3k+2\right)^2+3k+2+1=9k^2+12k+4+3k+3\)

\(=9k^2+15k+7=3\left(3k^2+5k+2\right)+1\) không chia hết cho 3

=> BT không chia hết cho 9

Từ 3 điều trên => đpcm

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

21 tháng 10 2019

n2+n+2 = n(n+1)+2

n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))

 n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3

n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3

n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3

vậy với mọi n đều không chia hết
 

8 tháng 10 2016

Ta có 

n2 + n + 1=(n+2)(n−1)+3

Giả sử n2+n+1 chia het cho 9

=>(n+2)(n−1)+3 chia hết cho 3 

=> (n+2)(n-1) chia hết cho 3

Mà (n+2)-(n-1)=3 chia hết cho 3

=>n+2 và n-1 cùng chia hết cho 3

=>(n+2)(n−1) chia hết cho 9

=>n+ n + 1chia 9 dư 3

=>vô lý

=>đpcm

8 tháng 10 2016

\(n^2+n+1=n^2+n+\frac{1}{4}-\frac{1}{4}+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà 3/4 ko chia hết cho 9 

=> đpcm

21 tháng 11 2015

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

2 tháng 7 2017

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.

Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$

$=5^{6k}.25+5.5^{3k}+1$

Vì $5^3\equiv 1\pmod {31}$

$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$

$\Rightarrow A\vdots 31$

Nếu $n=3k+2$ thì:

$A=5^{2(3k+2)}+5^{3k+2}+1$

$=5^{6k}.5^4+5^{3k}.5^2+1$

$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$

$\Rightarrow A\vdots 31$

Từ 2 TH suy ra $A\vdots 31$ (đpcm)