Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1+2010+2010^2+2010^3+...+2010^7
Ta có: 2011=1+2010
Số số hạng của tổng M là: (7-0):1+1=8
Mà 8:2=4 nên ta có:
M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)
M=2011+2010^2.(1+2010)+2010^4.(1+2010)+2010^6.(1+2010)
M=2011+2010^2.2011+2010^4.2011+2010^6.2011
M=2011.(1+2010^2+2010^4+2010^6)
Vì 2011 chia hết cho 2011 và 1+2010^2+2010^4+2010^6 là số nguyên
Vậy M chia hết cho 2011
Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.<
=> 2010M=2010+2010^3+2010^4+...+2010^8
=> M=2010^8-1/2009
=> M chia hết 2011
N=2^2012( tự tính sẽ ra)
N=2^1006 * 2^1006
suy ra N là số chính phương
Lời giải:
$A=1-\frac{1}{2011}+1-\frac{1}{2012}+1+\frac{2}{2010}$
$=3+(\frac{1}{2010}-\frac{1}{2011})+(\frac{1}{2010}-\frac{1}{2012})$
$> 3+0+0+0=3$
Ta có đpcm.
A = 20102011 - 20102010
A = 20102010 .( 2010 - 1)
A = 20102010.2009
2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009
Bài 1 :
72x+3 . 75-2x : 7x + 7x = 1
- > 7(2x+3)+(5-2x)-7 + 7x = 1
- > 71 + 7x = 1
- > 7x = 1 - 7 = -6 - > x thuộc rỗng
\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)
\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011
=>đpcm
có 2 trường hợp :
TH1 : m chẵn
=> m+2010=số chẵn
=> m+2011 = số lẻ
số lẻ x số chẵn = số chẵn
mà số chẵn thì chia hết cho 2 => đcpm
TH2 : m lẻ
tương tuej nha bn