K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Hướng dẫn trả lời:

Trong phương trình biểu diễn các đường thẳng (k + 1)x – 2y = 1, ta nhận thấy: Khi x = 0 thì

Điều này chứng tỏ rằng các đường thẳng có phương trình:

(k + 1)x – 2y = 1 luôn luôn đi qua điểm cố định I có tọa độ (0;−12)∀k∈R


28 tháng 6 2017

Giả sử đường thẳng (k + 1)x – 2y = 1 đi qua điểm cố định M(x0; y0)

Giải bài tập Vật lý lớp 12 nâng cao

Vậy điểm cố định mà đường thẳng (k + 1)x – 2y = 1 đi qua là Giải bài tập Vật lý lớp 12 nâng cao

20 tháng 2 2019

Giả sử đường thẳng (k + 1)x – 2y = 1 đi qua điểm cố định  M ( x 0 ;   y 0 )

Giải bài tập Vật lý lớp 12 nâng cao

Vậy điểm cố định mà đường thẳng (k + 1)x – 2y = 1 đi qua là Giải bài tập Vật lý lớp 12 nâng cao

23 tháng 4 2017

Giải:

Trong phương trình biểu diễn các đường thẳng \(\left(k+1\right)x-2y=1\)  ta nhận thấy:

Khi \(x=0\) thì:

Điều này chứng tỏ rằng các đường thẳng có phương trình:
 

\(\left(k+1\right)x-2y=1\) luôn luôn đi qua điểm cố định I có tọa độ \(\left(0;\frac{1}{2}\right)\forall k\in R\)
 

16 tháng 6 2017

Gọi điểm cố định mà các đường thẳng (d) đều đi qua P( x o ,  y o ).

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (*) nghiệm đúng với mọi giá trị không âm của k , do đó ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy, với k ≥ 0, các đường thẳng (d) đều đi qua điểm cố định P(1-  3 ;  3  – 1).

4 tháng 6 2019

 Với k ≥ 0 ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Giả sử ( x 0 ; y 0 ) là điểm cố định mà (d) luôn đi qua

Khi đó ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà (d) luôn đi qua với mọi k ≥ 0 là (1- 3 ;  3 -1)

5 tháng 12 2023

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

5 tháng 12 2023

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

NV
18 tháng 8 2021

Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m ta có:

\(y_0=\left(m+1\right)x_0-3m+4\)

\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)

Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)