K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

\(y=f\left(x\right)=21x-12\sqrt{3}x-m\)

\(=\left(21-12\sqrt{3}\right)x-m\)

vì \(21-12\sqrt{3}>0\)

nên hàm số luôn đồng biến với mọi x thuộc R 

28 tháng 1 2015

y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1

bt trong ngoặc luôn lớn hơn 0

hay a>0

=> đpcm
 

1 tháng 2 2015

y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1

bt trong ngoặc luôn lớn hơn 0

hay a>0

5 tháng 10 2019

@MaiLink thanh you bạn nha =)

1 tháng 10 2019

Gia su \(x_1< x_2\)

\(\Rightarrow x_1-x_2< 0\left(1\right)\)

Ta co:

\(f\left(x_1\right)-f\left(x_2\right)=\left(3m^2-7m+5\right)x_1-2011-\left(3m^2-7m+5\right)x_2+2011=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)Vi la chung minh dong bien nen xet

\(3m^2-7m+5>0\)

Dat \(g\left(m\right)=3m^2-7m+5\)

Ta lai co:

\(\Delta=\left(-7\right)^2-4.3.5=-11< 0\)

Theo dinh li dau tam thuc bac hai thi \(g\left(m\right)\)cung dau voi he so 3

\(\Rightarrow3m^2-7m+5>0\left(2\right)\left(\forall m\right)\)

Tu \(\left(1\right)\)va \(\left(2\right)\)suy ra;

\(\left(x_1-x_2\right)\left(3m^2-7m+5\right)< 0\)

Ma \(f\left(x_1\right)-f\left(x_2\right)=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vay ham so \(y=f\left(x\right)=\left(3m^2-7m+5\right)x-2011\)dong bien voi moi m

24 tháng 10 2016

Ta có tập xác định của hàm số : \(D=\text{[}0;+\infty\text{)}\)

Gọi \(x_1,x_2\) là các giá trị thuộc tập xác định của hàm số và \(0\le x_1< x_2\)

\(\Rightarrow x_1-x_2< 0\Leftrightarrow\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)< 0\Leftrightarrow\hept{\begin{cases}\sqrt{x_1}-\sqrt{x_2}< 0\\\sqrt{x_1}+\sqrt{x_2}>0\end{cases}}\)

Xét : \(g\left(x_1\right)-g\left(x_2\right)=\left(3\sqrt{x_1}-2\right)-\left(3\sqrt{x_2}-2\right)=3\left(\sqrt{x_1}-\sqrt{x_2}\right)< 0\)

\(\Rightarrow g\left(x_1\right)< g\left(x_2\right)\)

Vậy ta có \(\hept{\begin{cases}0\le x_1< x_2\\g\left(x_1\right)< g\left(x_2\right)\end{cases}}\) => Hàm số đồng biến với mọi \(x\ge0\)(đpcm)

31 tháng 5 2017

Hàm số bậc nhất

21 tháng 8 2018

Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)

Giả sử : \(x_1< x_2\)

\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)

\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)

Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)

\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vậy hàm số đồng biến trên \(R\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{4}{7}x_1+3-\dfrac{4}{7}x_2-3}{x_1-x_2}=\dfrac{4}{7}>0\)

=>Hàm số đồng biến với mọi x