Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (m^2+4)>0=> voi moi m
b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)
c) (m^2+2m+2=(m+1)^2+1>0 voi m=>f(x) luon dong bien=> dpcm
tong quat y=ax+b
DB khi a>0
NB khi a<0
hang so khi a=0
giai
a. với giá trị nào của m thì hàm số y= ( m2 +4)x +3 là hsđb :
=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m
b. với giá trị nào của m tì hàm số y= (m2 -2)x +31 là hsnb
a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)
c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R
ta ca
a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m
=> a>0 với mọi m=> y luôn đồng biến
\(y=f\left(x\right)=21x-12\sqrt{3}x-m\)
\(=\left(21-12\sqrt{3}\right)x-m\)
vì \(21-12\sqrt{3}>0\)
nên hàm số luôn đồng biến với mọi x thuộc R
1. Xét : m^2-2m+3 = (m^2-2m+1)+2 = (m-1)^2+2 > 0
=> hàm số trên luôn đồng biến trên tập xác định của nó
2. Để (d) đi qua A(2;8) thì :
8 = (m^2-2m+3).2 - 4
=> m=3 hoặc m=-1
3. Để (d) // (d') : y=3x+m-4 thì : m^2-2m+3=3 và -4 khác m-4
=> m=0 hoặc m=2 và m khác 0 => m=2
Tk mk nha
a) tự làm nha
b xét tích ac ta có: \(-m^2+m-1=-\left(m^2-m+\frac{1}{4}+\frac{3}{4}\right)=-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
ta có: \(\left(m-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]<0\)với mọi m
=> tích ac <0 <=> pt luôn có 2 nghiệm pb trái dấu với mọi m
y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1
bt trong ngoặc luôn lớn hơn 0
hay a>0
=> đpcm
y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1
bt trong ngoặc luôn lớn hơn 0
hay a>0