K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

G/s: đồ thị hàm số đi qua điểm \(I\left(x_0;y_0\right)\)cố định

Khi đó với mọi m  ta có: \(y_0=\left(2m-3\right)x_0+4m-2\)

<=> \(\left(y_0+3x_0+2\right)-\left(2x_0+4\right)m=0\)

<=> \(\hept{\begin{cases}y_0+3x_0+2=0\\2x_0+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y_0=4\\x_0=-2\end{cases}}\)

Vậy  đồ thị hàm số qua điểm I ( -2; 4)  cố định 

9 tháng 12 2016

a) (m^2+4)>0=> voi moi m

b)(m^2-2)<0=> -\(-\sqrt{2}< m< \sqrt{2}\)

c) (m^2+2m+2=(m+1)^2+1>0  voi m=>f(x) luon dong bien=> dpcm

9 tháng 12 2016

tong quat y=ax+b

DB khi a>0

NB khi a<0

hang so khi a=0

giai

a. với giá trị nào của m thì hàm số y= ( m+4)x +3 là hsđb : 

=> a>0=> m^2+4 >0 do m^2>=0=> m^2+4 >=0 tất nhiên >0 với mọi m

b. với giá trị nào của m tì hàm số y= (m-2)x +31 là hsnb

a<0=> m^2-2<0=> m^2<2=> !m!<\(\sqrt{2}=>-\sqrt{2}< m< \sqrt{2}\\ \)

c. chứng minh với mọi m, hàm số y=(m2+2m+2)x+3 luôn đồng biến trên R

ta ca

a=(m^2+2m+2=m^2+2m+1+1=(m+1)^2+1 do (m+1)^2>=0 moi m=> (m+1)^2+1>=1 voi moi m

=> a>0 với mọi m=> y luôn đồng biến

18 tháng 8 2016

đồng biến thì m+2>0

nghịch biến thì m+2<0

4 tháng 5 2016

a) khi x>0

để đồng biến thì m+2>=0=>m>=-2

b)khi x<0

để nghịch biến thì m+2<0=>m<-2

tự trình bày nha

4 tháng 5 2016

đề là x>0 mà