Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\forall n\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
mà n∈N
nên \(n\in\left\{0;2;6\right\}\)
Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)
b) Ta có: \(n^2+2n+7⋮n+2\)
\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
hay \(7⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(7\right)\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)
mà n∈N
nên n=5
Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)
2)
a) Ta có: \(2^{4n+2}+1\)
\(=2^{2\left(2n+1\right)}+1\)
\(=4^{2n+1}+1\)
Vì \(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)
nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N
hay \(2^{4n+2}+1⋮5\forall n\in N\)
a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)
\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)
\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)
\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\) \(\ge0\) \(\Rightarrow dpcm\)
b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)
c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)
\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)
Trả lời:
P/s: Học kém Hình nên chỉ đucợ mỗi câu a
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
~Học tốt!~
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
\(A=4^{n-1}\left(4+4^2+4^3\right)+4^{n+3}\left(4+4^2+4^3\right)+...+4^{n+17}\left(4+4^2+4^3\right)\)
\(\Rightarrow A=4^{n-1}\times84+4^{n+3}\times84+...+4^{n+17}\times84\)
\(\Rightarrow A=84\left(4^{n-1}+4^{n+3}+...+4^{n+17}\right)⋮84\)
Vậy \(A⋮84\)
Gọi ƯCLN(6n+5; 2n+1) là d. Ta có:
6n+5 chia hết cho d
2n+1 chia hết cho d => 6n+3 chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2)
Mà 2n+1 lẻ
=> không chia hết cho 2
=> d = 1
=> ƯCLN(6n+5; 2n+1) là d
=> 6n+5 và 2n+1 nguyên tố cùng nhau (đpcm)
6n + 5 chia hết cho n
2n + 1 chia hết cho a => 6n + 3 chia hết cho n
Mà 6n chia hết cho n
=> UCLN(6n + 5 ; 6n + 3) = 1
Vậy là số nguyên tố cùng nhau
P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu
\(a)\) \(y=f\left(x\right)=4x^2-5\)
\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)
\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b)\) \(f\left(x\right)=-1\)
\(\Leftrightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)
Và \(f\left(-x\right)=k\left(-x\right)=-kx\)
Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)
a,2^4n+1 có chữ số tận cùng luôn là 2 Do đó 2^4n+1 +3 chia hết cho 5 b,7^4n _____________________1_____7^4n -1 luôn __________5