K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a,2^4n+1 có chữ số tận cùng luôn là 2 Do đó 2^4n+1  +3 chia hết cho 5                                                                                                           b,7^4n      _____________________1_____7^4n  -1 luôn __________5

30 tháng 10 2020

1)

a) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

\(3n-3⋮n-1\forall n\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

mà n∈N

nên \(n\in\left\{0;2;6\right\}\)

Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)

\(n\left(n+2\right)⋮n+2\)

hay \(7⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(7\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)

mà n∈N

nên n=5

Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)

2)

a) Ta có: \(2^{4n+2}+1\)

\(=2^{2\left(2n+1\right)}+1\)

\(=4^{2n+1}+1\)

\(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)

nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N

hay \(2^{4n+2}+1⋮5\forall n\in N\)

31 tháng 10 2020

em cảm ơn cj nhiều lắm

16 tháng 8 2018

a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)

\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)

b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)

c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)

\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)

16 tháng 8 2018

\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)

 vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\)  \(\ge0\) \(\Rightarrow dpcm\)

b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)

c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)

\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

24 tháng 11 2017

\(A=4^{n-1}\left(4+4^2+4^3\right)+4^{n+3}\left(4+4^2+4^3\right)+...+4^{n+17}\left(4+4^2+4^3\right)\)

\(\Rightarrow A=4^{n-1}\times84+4^{n+3}\times84+...+4^{n+17}\times84\)

\(\Rightarrow A=84\left(4^{n-1}+4^{n+3}+...+4^{n+17}\right)⋮84\)

Vậy \(A⋮84\) 

24 tháng 11 2017

Yêu cầu bài này là gì vậy bạn ơi ?

30 tháng 8 2015

Gọi ƯCLN(6n+5; 2n+1) là d. Ta có:

6n+5 chia hết cho d

2n+1 chia hết cho d => 6n+3 chia hết cho d

=> 6n+5-(6n+3) chia hết cho d

=> 2 chia hết cho d

=> d thuộc Ư(2)

Mà 2n+1 lẻ

=> không chia hết cho 2

=> d = 1

=> ƯCLN(6n+5; 2n+1) là d

=> 6n+5 và 2n+1 nguyên tố cùng nhau (đpcm)

30 tháng 8 2015

6n + 5 chia hết cho n

2n + 1 chia hết cho a => 6n + 3 chia hết cho n

Mà 6n chia hết cho n 

=> UCLN(6n + 5 ; 6n + 3) = 1

Vậy là số nguyên tố cùng nhau

19 tháng 2 2020

P/s: Câu c sủa đề đi, như đề cũ không chứng minh được đâu

\(a)\) \(y=f\left(x\right)=4x^2-5\)

\(\Leftrightarrow f\left(3\right)=4.3^2-5=31\)

\(\Leftrightarrow f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)

\(b)\) \(f\left(x\right)=-1\)

\(\Leftrightarrow4x^2-5=-1\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(c)\) Đặt \(f\left(x\right)=kx\Leftrightarrow-f\left(x\right)=-kx\)

Và \(f\left(-x\right)=k\left(-x\right)=-kx\)

Do đó chứng minh được \(-f\left(x\right)=f\left(-x\right)\)