K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

a) \(x^2+2xy+2y^2+2y+1\)

\(=x^2+2xy+y^2+y^2+2y+1\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x+y\right)^2+\left(y+1\right)^2\ge0\)

Vậy đa thức trên chỉ nhận giá trị không âm.

b) \(9b^2-6b+4c^2+1\)

\(=\left[\left(3b\right)^2-2.3b.1+1\right]+4c^2\)

\(=\left(3b-1\right)^2+\left(2c\right)^2\ge0\)

Vậy đa thức trên chỉ nhận giá trị không âm.

c) \(x^2+y^2+2x+6y+10\)

\(=x^2+y^2+2x+6y+1+9\)

\(=\left(x^2+2x+1\right)+\left(y^2+2.y.3+3^2\right)\)

\(=\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

Vậy đa thức trên chỉ nhận giá trị không âm.

22 tháng 1 2017

a)\(x^2+2xy+2y^2+2y+1\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x+y\right)^2+\left(y+1\right)^2\ge0\)

Vậy đa thức trên chỉ nhận giá trị không âm

b)\(9b^2-6b+4c^2+1\)

\(=\left(9b^2-6b+1\right)+4c^2\)

\(=\left(3b-1\right)^2+4c^2\ge0\)

Vậy đa thức trên chỉ nhận giá trị không âm

c)\(x^2+y^2+2x+6y+10\)

\(=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)\)

\(=\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

Vậy đa thức trên chỉ nhận giá trị không âm

22 tháng 1 2017

a) x2 + 2xy + 2y2 + 2y +1

= (x2 + 2xy + y2) + (y2 + 2y +1)

= (x + y)2 + (y + 1)2

ta có : (x + y)2 + (y + 1)2 \(\ge\) 0

hay đa thức chỉ nhận giá trị không âm

b) 9b2 - 6b + 4c2 + 1

= [(3b)2 - 6b + 1] + 4c2

= (3b + 1)2 + 4c2

có (3b + 1)2 \(\ge\) 0

=> (3b + 1)2 + 4c2 \(\ge\) 0

hay đa thức chỉ nhận giá trị không âm

c) x2 + y2 + 2x + 6y +10

= (x2 + 2x +1 ) + (y2 + 6y + 32 )

= (x + 1)2 + ( y + 3)2

có (x + 1)2 + (y +3)2 \(\ge\) 0

nên đa thức chỉ nhân giá trị không âm

ok

4 tháng 8 2017

xin loi bn cau nay minh ko biet vi minh moi lp 3 thoi

4 tháng 8 2017

Ta có : x2 + 2xy + 2y2 + 2y + 1

= (x2 + 2xy + y2) + (y2 + 2y + 1)

= (x + y)2 + (y + 1)2

Vì : (x + y)2 \(\ge0\forall x\) ;  (y + 1)2 \(\ge0\forall x\)

Nên : (x + y)2 + (y + 1)\(\ge0\forall x\)

Vậy  (x + y)2 + (y + 1)không âm 

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

27 tháng 6 2018

4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)

=> \(x^2-2xy+y^2+a^2\ge0\)

Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.

b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)

=> \(x^2+2xy+2y^2+2y+1\ge0\)

Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.

c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)

Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)

=> \(9b^2-6b+4c^2+1\ge0\)

Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.

d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

=> \(x^2+y^2+2x+6y+10\ge0\)

Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.

1/

a/ \(x^4-y^4=\left(x^2-y^2\right)\)

b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

                                                  \(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)

                                                  \(=2b\left(a^2+b^2\right)\)

c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)

\(\left(a+b\right)^2+\left(a+b\right)\)

\(\left(a+b\right)\left(a+b+1\right)\)

28 tháng 9 2021

\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)

\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)

6 tháng 7 2018

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)