K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

a) Áp dụng BĐT Cauchy cho 2 số không âm , ta có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

b) Xét hiệu:

\(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

25 tháng 4 2018

a) a + b ≥ 2\(\sqrt{ab}\) ( a > 0 ; b > 0 )

⇔ a - 2\(\sqrt{ab}\) + b ≥ 0

\(\left(\sqrt{a}-\sqrt{b}\right)^2\) ≥ 0 ( luôn đúng )

b) Áp dụng BĐT Cô-si :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0)

⇒ a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

\(\dfrac{a^2+b^2}{ab}\) ≥ 2

\(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2

27 tháng 4 2017

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

2 tháng 5 2017

a) Ta có: \(\left(a-b\right)^2\ge0\)

=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)

b) \(\left(a+b\right)^2\ge0\)

=> \(a^2+b^2+2ab\ge0\)

<=> \(a^2+b^2\ge-2ab\)

<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)

c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)

\(a\left(a+2\right)=a^2+2a\)

Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)

d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)

<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)

<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)

(1) đúng => (*) đúng

d) Bạn ấy giải rồi ,mình không giải nữa

2 tháng 5 2017

e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)

\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)

Vậy..........

18 tháng 6 2017

Áp dụng bất đẳng thức AM - GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(a=1\)

\(\Rightarrowđpcm\)

18 tháng 6 2017

Áp dụng bất đẳng thức AM-GM ta có:

\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)

Dấu "=" sảy ra khi và chỉ khi \(a=1\)

Vậy \(a+\dfrac{1}{a}\ge2\) (đpcm)

Chúc bạn học tốt!!!

17 tháng 3 2016

câu a dễ mà mình học lớp 6 thôi

do a>0 , b> 0 nên a , b là số nguyên dương

=> để a.b=1

thì a=1

b=1

=>(1+1).(1+1)

=    2.2

=4 

4 =4

=> (a+1).(b+1) \(\ge\)

17 tháng 3 2016

bài 2 : đó là bất đẳng thức cô shi đó bạn dấu ''='' xảy ra khi a=b

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

9 tháng 4 2018

\(\dfrac{a-b}{a+b}\le\dfrac{a^2-b^2}{a^2+b^2}\)

khi nhân 2 vế của bất pt với 1 số dương thì bất pt không đổi dấu.

nhân 2 vế với (a + b)(a2 + b2) ta được bất pt

\(\left(a-b\right)\left(a^2+b^2\right)\le\left(a^2-b^2\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2\right)\le\left(a-b\right)\left(a+b\right)\left(a+b\right)\)

nếu a - b > 0 thì ta chia 2 vế của bất pt cho (a - b) thì bất pt không đổi dấu

\(\Leftrightarrow a^2+b^2\le\left(a+b\right)^2\Leftrightarrow0\le2ab\) luôn đúng vì a > 0, b > 0

nếu a - b = 0 thì bất pt vẫn đúng.

nếu a - b < 0 thì bất pt không xảy ra.

vậy với a > 0, b > 0 ; a > b thì \(\dfrac{a-b}{a+b}\le\dfrac{a^2-b^2}{a^2+b^2}\) (cmt)

10 tháng 4 2018

cảm ơn nha

24 tháng 3 2018

\(\dfrac{1}{a}< \dfrac{1}{b}\)

\(\Leftrightarrow ab\cdot\dfrac{1}{a}< ab\cdot\dfrac{1}{b}\)(nhân cả hai vế với ab>0)

\(\Leftrightarrow b< a\)(luôn đúng)

=>đpcm