Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM - GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu " = " khi a = 1
Vậy...
a) Áp dụng BĐT Cauchy cho 2 số không âm , ta có:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
b) Xét hiệu:
\(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)
=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
a) a + b ≥ 2\(\sqrt{ab}\) ( a > 0 ; b > 0 )
⇔ a - 2\(\sqrt{ab}\) + b ≥ 0
⇔ \(\left(\sqrt{a}-\sqrt{b}\right)^2\) ≥ 0 ( luôn đúng )
b) Áp dụng BĐT Cô-si :
x2 + y2 ≥ 2xy ( x > 0 ; y > 0)
⇒ a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ \(\dfrac{a^2+b^2}{ab}\) ≥ 2
⇔\(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2
\(\dfrac{1}{a}< \dfrac{1}{b}\)
\(\Leftrightarrow ab\cdot\dfrac{1}{a}< ab\cdot\dfrac{1}{b}\)(nhân cả hai vế với ab>0)
\(\Leftrightarrow b< a\)(luôn đúng)
=>đpcm
a) Ta có: \(\left(a-b\right)^2\ge0\)
=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)
b) \(\left(a+b\right)^2\ge0\)
=> \(a^2+b^2+2ab\ge0\)
<=> \(a^2+b^2\ge-2ab\)
<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)
c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)
\(a\left(a+2\right)=a^2+2a\)
Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)
<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)
<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)
(1) đúng => (*) đúng
d) Bạn ấy giải rồi ,mình không giải nữa
e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)
\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)
Vậy..........
Bài 1: \(a+b\ge1\). cm \(a^4+b^4\ge\dfrac{1}{8}\)
ta có : \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)(BĐT bunyakovsky)
Áp dụng BĐt bunyakovsky 1 lần nữa:
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.\dfrac{1}{4}=\dfrac{1}{8}\)
dấu = xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài 2:
Áp dụng BĐT bunyakovsky dạng đa thức và phân thức:
\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)\left(a+b+c\right)\ge\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2\ge\left[\dfrac{\left(a+b+c\right)^2}{a+b+c}\right]^2=\left(a+b+c\right)^2\)
do đó \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\)
dấu = xảy ra khi a=b=c
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Lại theo Cauchy-Schwarz lần nữa:
\(\left[\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2+b^2\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\dfrac{1}{4}\Leftrightarrow a^4+b^4\ge\dfrac{1}{8}\)
Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)
Bài 2:
Trước tiên ta chứng minh \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Ta chứng minh bổ đề: \(\dfrac{a^3}{b^2}\ge\dfrac{a^2}{b}+a-b\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Viết các BĐT tương tự và cộng lại
\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+a-b+\dfrac{b^2}{c}+b-c+\dfrac{c^2}{a}+c-a=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\left(1\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(2\right)\)
Từ \((1);(2)\) ta thu được ĐPCM
Áp dụng BDDT AM-GM với các cố thực dương ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}=2}\)
Dấu"=" xảy ra\(\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{x}\)
\(\Leftrightarrow x^2=y^2\)
\(\Leftrightarrow x=y\)
bài này cũng hỏi được \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)
Theo BĐT AM-GM :
\(\sqrt{b}=\sqrt{b\cdot1}\le\frac{b+1}{2}\)
\(\Rightarrow\frac{a}{\sqrt{b}}\ge\frac{a}{\frac{b+1}{2}}=\frac{2a}{b+1}\)
Dấu "=" xảy ra \(\Leftrightarrow b=1\)
+ Tương tự ta cm đc :
\(\frac{b}{\sqrt{c}}\ge\frac{2b}{c+1}\). Dấu "=" xảy ra \(\Leftrightarrow c=1\)
\(\frac{c}{\sqrt{a}}\ge\frac{2c}{a+1}\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)
Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+}+\frac{c}{a+1}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Bài 1:
Áp dụng BĐt cauchy dạng phân thức:
\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)
dấu = xảy ra khi 2x+y=x+2y <=> x=y
Bài 2:
ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)
\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)
Áp dụng BĐT trên vào bài toán ta có:
\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
......
dấu = xảy ra khi a=b=c
Bài 2:
Áp dụng BĐT cauchy cho 2 số dương:
\(a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm
dấu = xảy ra khi a=b=c=1
Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)
Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )
BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D
Áp dụng bất đẳng thức AM - GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu " = " xảy ra khi \(a=1\)
\(\Rightarrowđpcm\)
Áp dụng bất đẳng thức AM-GM ta có:
\(a+\dfrac{1}{a}\ge2\sqrt{a.\dfrac{1}{a}}=2\sqrt{1}=2\)
Dấu "=" sảy ra khi và chỉ khi \(a=1\)
Vậy \(a+\dfrac{1}{a}\ge2\) (đpcm)
Chúc bạn học tốt!!!