K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Ta có:

\(\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=100a+10b+c+100b+10c+a+100c+10a+b\)

\(=\left(100a+10a+a\right)+\left(100b+10b+b\right)+\left(100c+10c+c\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)\)

\(=37.3\left(a+b+c\right)\)

Giả sử \(S\)là số chính phương thì \(S\)phải chứa số \(37\)mủ chẵn

\(\Rightarrow3\left(a+b+c\right)⋮37\)

\(\Rightarrow a+b+c⋮37\)

Điều này không xảy ra vì \(1\le a+b+c\le27\)

Vậy \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)