K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Biến đổi VT, ta được:

\(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2-a^2d^2-2abcd-b^2c^2\)

\(=a^2c^2+b^2d^2-a^2d^2-b^2c^2\)

\(=a^2\left(c^2-d^2\right)+b^2\left(d^2-c^2\right)=\left(c^2-d^2\right)\left(a^2-b^2\right)\)

Vậy...........

13 tháng 7 2016

( a2 - b2). ( c2 - d2 ) = ( a.c + b.d)2 - ( a.d + b.c)2

Mình viết nhầm đề, các bạn giúp mình giải gấp nha !!!

6 tháng 2 2022

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

2 tháng 3 2022

 mik chưa hiểu dòng thứ 2 bạn giải thích rõ hơn được ko

 

1 tháng 11 2019

Biến đổi vế trái ta có:

VT = ( a 2  +  b 2 )( c 2  +  d 2 )

=  a 2 c 2  +  a 2 d 2  +  b 2 c 2 +  b 2 d 2

= ( a 2 c 2  + 2abcd +  b 2 d 2  ) + ( a 2 d2 – 2abcd +  b 2 c 2 )

=  a c + b d 2 + a d - b c 2 =VP

Vế phải bằng vế trái nên đẳng thức được chứng minh.

2 tháng 5 2022

-Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)

-Cộng các vế, ta được:

\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)

-Dấu "=" xảy ra khi \(a=b=c=d=0\)

17 tháng 7 2021

       \(ac+bd=0\)

\(=\) \(abc^2+abd^2+cda^2+cdb^2\)

\(=\)  \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)

\(=\)  \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24