Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\forall n\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
mà n∈N
nên \(n\in\left\{0;2;6\right\}\)
Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)
b) Ta có: \(n^2+2n+7⋮n+2\)
\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
hay \(7⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(7\right)\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)
mà n∈N
nên n=5
Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)
2)
a) Ta có: \(2^{4n+2}+1\)
\(=2^{2\left(2n+1\right)}+1\)
\(=4^{2n+1}+1\)
Vì \(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)
nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N
hay \(2^{4n+2}+1⋮5\forall n\in N\)
Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:
$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên
Do đó $A$ chẵn hay $A\vdots 2(*)$
Mặt khác:
$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên
$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$
Và:
$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$
do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên
$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$
Do đó:
$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$
Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)