K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Chứng minh chia hết cho 2:

Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)

Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)

Theo Fecma vì 11 là số nguyên tố nên

\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)

Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)

\(\Rightarrow2^{4n+1}=10k+2\)

Kết hợp với (2) ta được

\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)

Tương tự ta có:

\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)

Ta lại có: 

\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10l+3\)

Kết hợp với (4) ta được

\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)

Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)

\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)

Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)

7 tháng 1 2019

\(D=\left(7^1+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(\Rightarrow D=7^1.\left(1+7+7^2+7^3\right)+7^5.\left(1+7+7^2+7^3\right)+...+7^{4n-3}.\left(1+7+7^2+7^3\right)\)

\(\Rightarrow D=7^1.400+7^5.400+...+7^{4n-3}.400=400.\left(7^1+7^5+...+7^{4n-3}\right)\)

Vậy D chia hết cho 400

3 tháng 12 2016

a, n=1,3,5,7,9

b, n=2,7

c, n=?

d,n=7

30 tháng 10 2020

1)

a) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

\(3n-3⋮n-1\forall n\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

mà n∈N

nên \(n\in\left\{0;2;6\right\}\)

Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)

\(n\left(n+2\right)⋮n+2\)

hay \(7⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(7\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)

mà n∈N

nên n=5

Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)

2)

a) Ta có: \(2^{4n+2}+1\)

\(=2^{2\left(2n+1\right)}+1\)

\(=4^{2n+1}+1\)

\(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)

nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N

hay \(2^{4n+2}+1⋮5\forall n\in N\)

31 tháng 10 2020

em cảm ơn cj nhiều lắm