K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kha,hỏi bài nói luôn đi bày đặt

26 tháng 11 2019

??????????

Bài 1

\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)

Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)

\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)

hay 

\(\left(2^{1995}-1\right)⋮31\)

Bài 2

Làm tương tự

3 tháng 9 2017

cảm ơn nhiều nhé

14 tháng 2 2016

ý 3 tớ không biết chia hết cho 9 hay là 19 ấy nhé

4 tháng 2 2016

ta có 301293 - 1 chia hết cho 9

chứng minh rồi

4 tháng 2 2016

3012^93 chia hết cho 9 vì 3012^93 chia 9 dư 1 => 3012^93-1 chia hết cho 1 

chứng minh rồi nha

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)