Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì EFGH là tứ giác nên \(\widehat{E}+\widehat{F}+\widehat{G}+\widehat{H}=360^0\)
\(\Leftrightarrow6x-4+5x+14+5x-14+3x+22=360^0\)
\(\Leftrightarrow19x+18=360^0\)
\(\Leftrightarrow19x=342^0\)
\(\Leftrightarrow x=18\)
Thay x=18 vào các góc E;H;G;F ta được
\(\widehat{E}=104^0\); \(\widehat{H}=76^0\); \(\widehat{G}=76^0\); \(\widehat{F}=104^0\)
Vì \(\widehat{E}+\widehat{H}=104^0+76^0=180^0\)mà chúng ở vị trí trong cùng phía nên EF//GH mà \(\widehat{H}=\widehat{G}=76^0\)nên EFGH là hình thang cân
b) Vì EF//HI (I thuộc HG va EF//HG) và FI//EH suy ra EFIH la hình bình hành
suy ra EF=HI
Vì EFGH là htc nên EH=FG và EG=HF
Tự vẽ hình nha
Vì hình thang ABCD cân
AD = BC;
Ĉ = D̂
Xét hai tam giác vuông AED và BFC có:
AD = BC
Ĉ = D̂
⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)
⇒ DE = CF.
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3=2c^3-16d^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^3-15d^3\)
Ta có: \(3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3-a=\left(a-1\right)a\left(a+1\right)⋮3\)
\(b^3-b=\left(b-1\right)b\left(b+1\right)⋮3\)
\(c^3-c=\left(c-1\right)c\left(c+1\right)⋮3\)
\(d^3-d=\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\)
\(2x^2-4y=10\)\(\Leftrightarrow2\left(x^2-2y\right)=10\Leftrightarrow x^2-2y=5\Leftrightarrow x^2-5=2y\)
Ta thấy: 5 là số lẻ,2y là số chẵn.\(\Rightarrow x^2\)là số lẻ do đó x lẻ luôn tìm được y tương ứng.
VD:x=5,y=10 xem lại đề
Ai T.I.C.K cho mk may mắn cả tuần
Mk T.I.C.K lại cho
\(27^3+5^3=\left(27+5\right)\left(27^2-27.5+5^2\right)\)(hằng đăng thức số 6)
\(=32.\left(27^2-27.5+5^2\right)\)
Vì 32 chia hết cho 4 nên \(\left(27^3+5^3\right)⋮4\)
Bài này dễ mà. Chúc bạn học tốt.
mik chưa học hằng đẳng thức bạn làm cách thông thường dc ko ?