K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2023

Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2001}{3^{2001}}\)

3A = \(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2001}{3^{2000}}\)

3A - A = ( \(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2001}{3^{2000}}\) ) - ( \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2001}{3^{2001}}\) )

2A = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}-\dfrac{2001}{3^{2001}}\)

Đặt B = 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}\)

3B = 3 + 1 + \(\dfrac{1}{3}+...+\dfrac{1}{3^{1999}}\)

3B - B = ( 3 + 1 + \(\dfrac{1}{3}+...+\dfrac{1}{3^{1999}}\) ) - ( 1 + \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2000}}\) )

2B = 3 - \(\dfrac{1}{3^{2000}}\) - 

B = \(\dfrac{3}{2}-\dfrac{1}{3^{2020}\cdot2}\)

Vậy 2A = \(\dfrac{3}{2}-\dfrac{1}{3^{2000}\cdot2}\) - \(\dfrac{2001}{3^{2001}}\) 

A = \(\dfrac{3}{4}-\dfrac{1}{3^{2000}\cdot2^2}-\dfrac{1}{3^{2001}\cdot2}< \dfrac{3}{4}\)

Mà \(\dfrac{3}{4}< \dfrac{4}{5}\)

Vậy A \(< \dfrac{4}{5}\)

15 tháng 1 2016

4S - S = 4 + 42 + 43 + 44 +....+ 42002 + 42003 - 1 - 4 - 42 - 43 - 44 -......- 42001 - 42002

 3S =  42003 - 1 => 42003 - 3S = 1  là số nguyên dương nhỏ nhất (đpcm)

23 tháng 4 2016

   1+(-2)+3+(-4)+...+2001+(-2002)

=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]

=(-1)+(-1)+...+(-1)                   (có 1001 số hạng)

=(-1).1001

=-1001

25 tháng 4 2016

cám ơn

5 tháng 10 2015

Mình giúp cho đáp án đúng 100%

5^2003+5^2002+5^2001 chia hết cho 31

=5^2001.(1+5+5^2)

=5^2001.31 chia hết cho 3

hai bài kia tương tự rất dễ đúng ko

17 tháng 9 2016

Ta có: 52003 + 52002 + 52001

= 52001.(1 + 5 + 25)

= 52001 . 31 chia hết cho 31

Ta có: 1 + 7 + 72 + ...... + 7101

= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)

= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)

= 1.8 + 72.8 + ..... + 7100 . 8

= 8.(1 + 72 + ..... + 7100) chia hết cho 8

16 tháng 1 2019

a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)

  \(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)

  \(=0+0+...+0=0\)

b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)

   \(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)

   \(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

   \(=\left(-4\right)\cdot501=\left(-2004\right)\)

  

7 tháng 11 2023

\(a,\left(2^{2007}+2^{2006}\right):2^{2006}=2^{2007}:2^{2006}+2^{2006}:2^{2006}=2+1=3\\ b,\left(3^{2011}+3^{2010}\right):3^{2010}=3^{2011}:3^{2010}+3^{2010}:3^{2010}=3+1=4\\ c,\left(5^{2001}+5^{2000}\right):5^{2000}=5^{2001}:5^{2000}+5^{2000}:5^{2000}=5+1=6\)

Tương tự là d,e,f và kết quả đúng lần lượt là 5,7,8 nha

1 tháng 5 2016

a) 1 + (-2) = (-1) và 2001 + (-2002) = (-1)

=> Nếu ta lấy (-1) nhân với số cặp phép tính sẽ ra đc đáp án

(-1) * ( 2002 : 2 )= (-1001)

KQ= (-1001)

b) 1 + 2001= 2002 và (-3) +(-1999) = (-2002)

nếu ta lấy hai phép tính trên cộng lại với nhau sẽ = 0

và ta nhân 0 với số cặp phép tính nhưng 0 nhân với mấy cũng sẽ = 0

KQ= 0

c) mik cần biết p bạn tìm x hay tính phép tính (x-3).(x-5)

3 tháng 5 2016

Mk tìm x bạn ak

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
Đặt $P=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2001}{3^{2001}}$

$3P=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2001}{3^{2000}}$

$3P-P=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2000}}-\frac{2001}{3^{2001}}$

$2P+\frac{2001}{3^{2001}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2000}}$

$3(2P+\frac{2001}{3^{2001}})=3+1+\frac{1}{3}+...+\frac{1}{3^{1999}}$
$3(2P+\frac{2001}{3^{2001}})- (2P+\frac{2001}{3^{2001}})=3-\frac{1}{3^{2000}}$

$2(2P+\frac{2001}{3^{2001}}) =3-\frac{1}{3^{2000}}$

$P=\frac{1}{4}(3-\frac{4005}{3^{2001}})< \frac{3}{4}< \frac{4}{5}$