K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Bài này tui làm rồi:

109^3 ≡ 1 (mod 7) 
=> 109^(3k + r) ≡ 109^r (mod 7) 
Mà 345 = 0 (mod 7) 
=> 109^345 = 109^(3.115 + 0) ≡ 109^0 = 1 (mod 7) 
=> 109^3 chia 7 dư 1

Bạn làm theo đồng dư là dễ mà đúng nhất. Xem thêm tại : https://www.slideshare.net/CharliePhan93x/c-ng-d-thc-trong-ton-7

Có : 109 đồng dư với 4 theo mod 7 

=> 109345 đồng dư với 4345  theo mod 7

Có : 4345 = 2690 = (23)230  = 8230 

Có 8 đồng dư với 1 theo mod 7

=> 8230 đồng dư với 1230 đồng dư với 1 theo mod 7

=> 8230 : 7 dư 1

 Vậy: 109345 : 7 dư 1

Ủng hộ mik nhé ^_^"

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

2 tháng 8 2016

gọi số chính phương là \(a^3\)sau đó phân tích là ra mà

2 tháng 8 2016

giải rõ ràng ra hộ vs ạ

24 tháng 2 2018

 Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 
Đó là cách làm của mình có gì không ổn mọi người bổ sung giúp mình nhé. Chúc bạn học giỏi!

24 tháng 2 2018

Cảm ơn bn nhé!