Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Đó là cách làm của mình có gì không ổn mọi người bổ sung giúp mình nhé. Chúc bạn học giỏi!
Bài này tui làm rồi:
109^3 ≡ 1 (mod 7)
=> 109^(3k + r) ≡ 109^r (mod 7)
Mà 345 = 0 (mod 7)
=> 109^345 = 109^(3.115 + 0) ≡ 109^0 = 1 (mod 7)
=> 109^3 chia 7 dư 1
Bạn làm theo đồng dư là dễ mà đúng nhất. Xem thêm tại : https://www.slideshare.net/CharliePhan93x/c-ng-d-thc-trong-ton-7
Có : 109 đồng dư với 4 theo mod 7
=> 109345 đồng dư với 4345 theo mod 7
Có : 4345 = 2690 = (23)230 = 8230
Có 8 đồng dư với 1 theo mod 7
=> 8230 đồng dư với 1230 đồng dư với 1 theo mod 7
=> 8230 : 7 dư 1
Vậy: 109345 : 7 dư 1
Ủng hộ mik nhé ^_^"