Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6=0\)
\(\Leftrightarrow x^2=6\)
\(\Leftrightarrow x=\pm\sqrt{6}\)
Mà \(\pm\sqrt{6}\)là số vô tỷ
Vậy \(x^2-6=0\)không có nghiệm hữu tỉ
Gs bình phương của số hữu tỉ a bằng 5.
Ta có: a^2=5
=> a^2 - 5 = 0
=> a^2 - (cbh của năm)^2 = 0
=> (a - cbh của 5)*(a+cbh của 5)=0
=> a-(cbh của 5) bằng 0 => a=cbh của 5
hoặc a + cbh của 5 bằng 0 => a= -(cbh của 5)
Vì cbh của 5 và -(cbh của 5) là 2 số vô tỉ
=> trái vs điều gs
=> DPCM
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
A=\(2x^2+x-6=0\)
<=>\(2x^2+4x-3x-6=0\)
<=>\(2x\left(x+2\right)-3\left(x+2\right)=0\)
<=>\(\left(x+2\right)\left(2x-3\right)\)=0
Suy ra x+2=0 Hoặc 2x-3=0
<=>x=\(-2\)Hoặc <=>x=\(\frac{3}{2}\)
2x2+x-6=0 (x\(\in\)Q)
<=>2x2+4x-3x-6=0
<=>2x(x+2)-3(x+2)=0
<=>(2x-3)(x+2)=0
<=>\(\orbr{\begin{cases}2x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\left(ktm\right)\\x=-2\left(tm\right)\end{cases}}\)
vậy x=-2
Giả sử căn bậc 2 của 2 là 1 số hữu tỉ ( nếu kết quả ra số hữu tỉ thì điều giả sử là đúng còn nếu ko thì điều giả sử là sai)
Vậy căn 2 = a/b
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản.
bình phương hai vế ta được: 2=a^2/b^2
suy ra: a^2=2b^2
Vậy a^2 là số chẵn, suy ra a là số chẵn.
nên a=2m, m thuộc Z(m là 1 tham số), ta được:
(2m)^2=a^2=2b^2
suy ra: b^2=(2m)^2/2=2m^2
Vậy b^2 là số chẵn suy ra b là số chẵn.
nên b=2n, n thuộc Z(n là tham số)
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu.
Vậy căn bậc 2 của 2 là 1 số vô tỉ.
Giả sử tồn tại số hữu tỉ có bình phương bằng 2, là \(\frac{m}{n}\) ( ƯCLN(m;n) = 1 )
\(\Rightarrow\frac{m^2}{n^2}=2\)
\(\Rightarrow m^2=2n^2\)
Mà ƯCLN(m;n)=1 nên \(m^2\) chia hết cho 2
⇒mchia hết cho 2 ( vì 2 là số nguyên tố )
Đặt \(m=2k\)
\(\Rightarrow4k^2=2n^2\)
\(\Rightarrow n^2=2k^2\)
Tương tự, n phải chia hết cho 2
DO đó ƯCLN(m;n) = 2, trái với điều kiện.
Vậy ...
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
Theo bài ra ta có: \(x^2-5=0\Rightarrow x^2=5\Rightarrow x=\sqrt{5}\)
Vì \(\sqrt{5}\)là số thực nên phương trình đã cho không có nghiệm hữu tỉ
\(x^2-5=0\)
\(\Rightarrow x^2=5\)
\(\Rightarrow x=\pm\sqrt{5}\)
kết quả đã cho là số vô tỉ vậy .....