Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)
Lời giải:
Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$
Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.
Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên
$x^2+y^2+z^2=2015$
$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$
$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$
$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$
Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.
Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.
với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...
với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm
với n>2
nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n
suy ra xn+yn<zn (1)
nếu x2+y2<z2 suy ra
(x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n
mà (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra xn+yn<zn (2)
còn trường hợp x2+y2>z2 mình chưa nghĩ ra nha
bạn thông cảm nhé
@minhnguvn
2(x + y) + xy = x2 + y2
<=> x2 + y2 - 2x - 2y - xy = 0
<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0
<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0
<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16
<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)
Do VT = (2x - y - 2)2 \(\ge\)0 \(\forall\)x;y
=> VP = 16 - 3(y - 2)2 \(\ge\)0
=> 3(y - 2)2 \(\le\) 16
=> (y - 2)2 \(\le\)16/3
Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}
=> y - 2 \(\in\){0; 1; -1; 2; -2}
Lập bảng:
y - 2 | 0 | 1 | -1 | 2 | -2 |
y | 2 | 3 | 1 | 4 | 0 |
Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0
<=> (2x - 4)2 = 16
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Với y = 3 .... (tự thay vào tìm x)