Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(a+bi\right)^2+\left(a-bi\right)^2\\ =a^2+2abi-b^2+a^2-2abi-b^2\\ =2a^2-2b^2\\ =2\left(a^2-b^2\right)=VP\)
\(VT=\left(a+bi\right)^2-\left(a-bi\right)^2\\ =a^2+2abi-b^2-\left(a^2-2abi-b^2\right)\\ =a^2+2abi-b^2-a^2+2abi+b^2\\ =4abi=VP\)
\(VT=\left(a+bi\right)^2\left(a-bi\right)^2\\ =\left[\left(a+bi\right)\left(a-bi\right)\right]^2\\ =\left[a^2-\left(bi\right)^2\right]^2\\ =\left(a^2+b^2\right)^2=VP\)
câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r
12.
\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)
Phương trình:
\(x^2+\left(y+3\right)^2+z^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+6y=0\)
13.
\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)
14.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)
Phương trình:
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)
Lời giải:
Đặt \(\frac{z_1}{z_2}=t\Rightarrow \overline{\left(\frac{z_1}{z_2}\right)}=\overline{t}\)
Ta cần chứng minh \(\overline{t}=\frac{\overline{z_2t}}{\overline{z_2}}\Leftrightarrow \overline{t}\overline{z_2}=\overline{tz_2}\)
Đặt \(t=a+bi,z_2=c+di\). Bài toán tương đương với:
\((a-bi)(c-di)=\overline{(a+bi)(c+di)}\Leftrightarrow ac-bd-i(ad+bc)=ac-i(ad+bc)-bd\)
(luôn đúng)
Do đó ta có đpcm
b)
Dựa vào phần a, ta có:
\(\text{VT}^2=\frac{z_1}{z_2}.\overline{\left(\frac{z_1}{z_2}\right)}=\frac{z_1}{z_2}.\frac{\overline{z_1}}{\overline{z_2}}=\frac{|z_1|^2}{|z_2|^2}=\text{VP}^2\)
\(\Rightarrow \text{VT}=\text{VP}\) (cùng dương)
Ta có đpcm