K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7

Lời giải:

Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.

$\Rightarrow a^2+5a+7\vdots 3$

$\Rightarrow a^2+5a+7-3a-6\vdots 3$

$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$

$\Rightarrow a+1\vdots 3$

$\Rightarrow a=3k-1$ với $k$ nguyên.

Khi đó:

$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$

$=9k^2+9k+3\not\vdots 9$

Ta có đpcm.

8 tháng 10 2016

Ta có 

n2 + n + 1=(n+2)(n−1)+3

Giả sử n2+n+1 chia het cho 9

=>(n+2)(n−1)+3 chia hết cho 3 

=> (n+2)(n-1) chia hết cho 3

Mà (n+2)-(n-1)=3 chia hết cho 3

=>n+2 và n-1 cùng chia hết cho 3

=>(n+2)(n−1) chia hết cho 9

=>n+ n + 1chia 9 dư 3

=>vô lý

=>đpcm

8 tháng 10 2016

\(n^2+n+1=n^2+n+\frac{1}{4}-\frac{1}{4}+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà 3/4 ko chia hết cho 9 

=> đpcm

1 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2017

nếu m là số lẻ =>m=2k+1

=>m2+4m+7=(2k+1)2+4(2k+1)+7=4k2+4k+1+8k+4+7=4(k2+3k+3) chia hết cho 4. =>m không thể là số lẻ.

21 tháng 10 2019

n2+n+2 = n(n+1)+2

n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))

 n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3

n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3

n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3

vậy với mọi n đều không chia hết
 

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Lời giải:
Theo công thức hằng đẳng thức thì:

$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+....+ab^{n-2}+b^{n-1})\vdots a-b$ (đpcm)

Với $n$ lẻ:

$a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+....-ab^{n-2}+b^{n-1})\vdots a+b$ (đpcm)

20 tháng 8 2016

\(P=n^3\left(n^2-7\right)^2-36\)

\(P=n\left[n\left(n^27\right)^2-36\right]\)

\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105

20 tháng 8 2016

à 36n mak bn, k p 36 k đâu