Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
n2+n+2 = n(n+1)+2
n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))
n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3
n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3
n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3
vậy với mọi n đều không chia hết
Ta có
n2 + n + 1=(n+2)(n−1)+3
Giả sử n2+n+1 chia het cho 9
=>(n+2)(n−1)+3 chia hết cho 3
=> (n+2)(n-1) chia hết cho 3
Mà (n+2)-(n-1)=3 chia hết cho 3
=>n+2 và n-1 cùng chia hết cho 3
=>(n+2)(n−1) chia hết cho 9
=>n2 + n + 1chia 9 dư 3
=>vô lý
=>đpcm
Lời giải:
Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.
$\Rightarrow a^2+5a+7\vdots 3$
$\Rightarrow a^2+5a+7-3a-6\vdots 3$
$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$
$\Rightarrow a+1\vdots 3$
$\Rightarrow a=3k-1$ với $k$ nguyên.
Khi đó:
$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$
$=9k^2+9k+3\not\vdots 9$
Ta có đpcm.
\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)
\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)
Vậy \(a⋮3,\forall n\inℤ^+\)
\(a^5+29a=a^5-a+30a\)
Theo Fermat nhỏ thì \(a^5-a⋮5\) mặt khác \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)
nên \(a^5+29a⋮30\) ( điều phải chứng minh )