Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta A'B'C' \backsim \Delta ABC\) nên ta có:
\(\left\{ \begin{array}{l}A'B' = AB = 3\\B'C' = BC = 2\end{array} \right.\)
Vậy \(x = 3\) và \(y = 2\).
\(\dfrac{B'A}{B'C}=\dfrac{S_{AMB'}}{S_{CMB'}}=\dfrac{S_{ABB'}}{S_{CBB'}}=\dfrac{S_{ABB'}-S_{AMB'}}{S_{CBB'}-S_{CMB'}}=\dfrac{S_{ABM}}{S_{CBM}}\)
\(\dfrac{C'A}{C'B}=\dfrac{S_{AMC'}}{S_{BMC'}}=\dfrac{S_{ACC'}}{S_{BCC'}}=\dfrac{S_{ACC'}-S_{AMC'}}{S_{BCC'}-S_{BMC'}}=\dfrac{S_{ACM}}{S_{CBM}}\)
\(\dfrac{MA}{MA'}=\dfrac{S_{ABM}}{S_{A'BM}}=\dfrac{S_{ACM}}{S_{A'CM}}=\dfrac{S_{ABM}+S_{ACM}}{S_{A'BM}+S_{A'CM}}=\dfrac{S_{ABM}+S_{ACM}}{S_{MBC}}=\dfrac{S_{ABM}}{S_{MBC}}+\dfrac{S_{ACM}}{S_{MBC}}=\dfrac{B'A}{B'C}+\dfrac{C'A}{C'B}\)
Qua A kẻ đ/thẳng //BC cắt CC' và BB' tại M,N
Vì MN//BC theo Thales ta có:
\(\frac{B'A}{B'C}=\frac{AN}{BC}\left(1\right),\frac{C'A}{C'B}=\frac{AM}{BC}\left(2\right)\)
Cộng (1) và (2) có: \(\frac{B'A}{B'C}+\frac{C'A}{C'B}=\frac{AM}{BC}+\frac{AN}{BC}=\frac{MN}{BC}\)(3)
Lại có: \(\frac{MN}{BC}=\frac{OM}{OC}=\frac{OA}{OA'}\left(4\right)\)
Từ (3) và (4) có ĐPCM
a: Xét tứ giác AC'A'C có góc AC'C=góc AA'C=90 độ
nên AC'A'C là tứ giác nội tiếp
=>góc BC'A'=góc BCA
=>ΔBC'A' đồng dạng với ΔBCA
=>BC'/BC=BA'/BA
hay \(BC'\cdot BA=BA'\cdot BC\)
Xét tứ giác AB'A'B có góc AB'B=góc AA'B=90 độ
nên AB'A'B là tứ giác nội tiếp
=>góc CB'A'=góc CBA
=>ΔCB'A' đồng dạng với ΔCBA
=>CB'/CB=CA'/CA
hay \(CB'\cdot CA+CA'\cdot CB\)
=>\(BC'\cdot BA+CB'\cdot CA=BC^2\)
b: ΔAHM đồng dạng với ΔCDH
nên HM/HD=AH/CD(3)
ΔAHN đồng dạng với ΔBDH
nên AH/BD=HN/DH
=>AH/CD=HN/DH(4)
Từ (3) và (4) suy ra HM=HN
=>H là trung điểm của MN
Xét \(\Delta ABC \ và \ \Delta C'B'A'\)có:
\(\dfrac{AB}{C'A'}=\dfrac{12}{8}=\dfrac{3}{2}\\ \dfrac{BC}{A'B'}=\dfrac{18}{12}=\dfrac{3}{2}\\ \dfrac{CA}{B'C'}=\dfrac{27}{18}=\dfrac{3}{2}\\ =>\dfrac{AB}{C'A'}=\dfrac{BC}{A'B'}=\dfrac{CA}{B'C'}\)
=>\(\Delta ABC\) đồng dạng vs \(\Delta C'B'A'\)