Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\left(a\inℤ^+\right)\)
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(3\right)=27a+9b+3c+d\)
\(\Rightarrow f\left(5\right)-f\left(3\right)=98a+16b+2c\)
Mà \(f\left(5\right)-f\left(3\right)=2022\) nên \(98a+16b+2c=2022\)
\(\Leftrightarrow49a+8b+c=1011\)
Lại có \(f\left(7\right)=343a+49b+7c+d\)
\(f\left(1\right)=a+b+c+d\)
\(\Rightarrow f\left(7\right)-f\left(1\right)=342a+48b+6c\) \(=6\left(57a+8b+c\right)\) \(=6\left(8a+1011\right)\) (vì \(49a+8b+c=1011\))
Mà do \(a\inℤ^+\) nên \(f\left(7\right)-f\left(1\right)\) là hợp số (đpcm)
Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:
Diễn đàn Toán học
Diễn Đàn MathScope
.......
Bài 1.
+TH1: Đa thức có bậc là 0
\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)
Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)
Vậy \(f\left(x\right)=0\forall x\in R\)
+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.
Giả sử đa thức có bậc n.
Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)
Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)
Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.
Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.