K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

Ta có: \(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+.....+\frac{3}{5\cdot99!}+\frac{3}{5\cdot100!}\)

\(\frac{3}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(< \frac{3}{5}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(\frac{3}{5}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{3}{5}\left(1-\frac{1}{100}\right)< \frac{3}{5}=0,6\)

19 tháng 2 2017

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

19 tháng 2 2017

k=2

chuan 100%ok

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

28 tháng 1 2019

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)

11 tháng 5 2020

ảnh đại diện đẹp thế lấy ở đâu

14 tháng 10 2016

Ta có : \(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\right)\)

\(\Rightarrow S=2.\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{99}{50}\)

21 tháng 4 2017

=2.(1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+.........+\(\frac{1}{99}\)-\(\frac{1}{100}\))

=2.(1-\(\frac{1}{100}\))

S= 2.\(\frac{99}{100}\)

S=\(\frac{99}{50}\)

3 tháng 5 2019

A = 9(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\))

A = 9(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\))

A = 9(1 - \(\frac{1}{100}\))

A = 9.\(\frac{99}{100}\)=\(\frac{891}{100}\)=8,91

\(\frac{1}{1.2}=\frac{1}{2}\)

\(\frac{1}{1}-\frac{1}{2}=\frac{2}{2}-\frac{1}{2}=\frac{1}{2}\)

Nên trong bài toán: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

Mấy cái kia cũng vậy nên bạn yên tâm nha!!!!

4 tháng 5 2019

A : 9 = 1/1.2 + 1/2.3 + 1/3.4 + ..... + 1/98.99 + 1/99.100

A : 9 = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/98 - 1/99 + 1/99 - 1/100

A : 9 = 1 - 1/100

A : 9 = 100/100 - 1/100

A : 9 = 99/100

A = 9 . 99/100

A = 891/100 = 8,91 = 8 91/100

13 tháng 8 2018

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Ta có:

\(\frac{1}{51}>\frac{1}{75}\)

\(\frac{1}{52}>\frac{1}{75}\)

......................

\(\frac{1}{75}=\frac{1}{75}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25.\frac{1}{75}=\frac{1}{3}\)(1)

Ta có:

\(\frac{1}{76}>\frac{1}{100}\)

\(\frac{1}{77}>\frac{1}{100}\)

........................

\(\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25.\frac{1}{100}=\frac{1}{4}\)(2)

Từ (1) và (2) ta có:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{7}{12}\)(5)

Ta có:

\(\frac{1}{51}=\frac{1}{51}\)

\(\frac{1}{52}< \frac{1}{51}\)

...................

\(\frac{1}{75}< \frac{1}{51}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=25.\frac{1}{51}< 25.\frac{1}{50}=\frac{1}{2}\)(3)

Ta có:

\(\frac{1}{76}=\frac{1}{76}\)

\(\frac{1}{77}< \frac{1}{76}\)

...................

\(\frac{1}{100}< \frac{1}{76}\)

\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}=25.\frac{1}{76}< 25.\frac{1}{75}=\frac{1}{3}\)(4)

Từ (3) và (4) ta có:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)(6)

Từ (5) và (6) 

\(\Rightarrow\frac{7}{12}< \frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}< \frac{5}{6}\)

                                                            đpcm

Tham khảo nhé~