Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}< 1\) ( điều phải chứng minh )
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\left(\text{đ}pcm\right)\)
vậy:\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)
k mk bạn nha:)
Số chia rút gọn thành 1/51+1/52+...+1/99+1/100
=> biểu thức bằng 1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}\)
=\(1-\frac{1}{6}\)
=\(\frac{5}{6}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
Đặt : \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta thấy :
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}\)
\(.......................\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)
Vì \(\frac{1}{6}< \frac{6}{25}< \frac{1}{4}\)nên \(\frac{1}{6}< A< \frac{1}{4}\)hay \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
~ Hok tốt ~
Bài 1:
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Ta có:
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Ta có:
\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
\(\Rightarrow\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(\text{đ}pcm\right)\)
Bài 2:
\(a)\)Tách tổng A thành ba nhóm:
\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)
\(A>\frac{1}{30}\cdot20+\frac{1}{50}\cdot20+\frac{1}{70}\cdot20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}\)
\(A>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\left(\text{đ}pcm\right)\)
\(b)\)Tách tổng A thành sáu nhóm:
\(A=\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)\)\(+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)
\(A< \frac{1}{11}\cdot10+\frac{1}{21}\cdot10+\frac{1}{31}\cdot10+\frac{1}{41}\cdot10+\frac{1}{51}\cdot10+\frac{1}{61}\cdot10\)
\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\left(\text{đ}pcm\right)\)
#Sakura
Bài làm:
Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)
Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)
Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Ta có:
\(\frac{1}{51}>\frac{1}{75}\)
\(\frac{1}{52}>\frac{1}{75}\)
......................
\(\frac{1}{75}=\frac{1}{75}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25.\frac{1}{75}=\frac{1}{3}\)(1)
Ta có:
\(\frac{1}{76}>\frac{1}{100}\)
\(\frac{1}{77}>\frac{1}{100}\)
........................
\(\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25.\frac{1}{100}=\frac{1}{4}\)(2)
Từ (1) và (2) ta có:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{7}{12}\)(5)
Ta có:
\(\frac{1}{51}=\frac{1}{51}\)
\(\frac{1}{52}< \frac{1}{51}\)
...................
\(\frac{1}{75}< \frac{1}{51}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=25.\frac{1}{51}< 25.\frac{1}{50}=\frac{1}{2}\)(3)
Ta có:
\(\frac{1}{76}=\frac{1}{76}\)
\(\frac{1}{77}< \frac{1}{76}\)
...................
\(\frac{1}{100}< \frac{1}{76}\)
\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}=25.\frac{1}{76}< 25.\frac{1}{75}=\frac{1}{3}\)(4)
Từ (3) và (4) ta có:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)(6)
Từ (5) và (6)
\(\Rightarrow\frac{7}{12}< \frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}< \frac{5}{6}\)
đpcm
Tham khảo nhé~