Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao của ∠ABC và ∠ACB, gọi D, F, E lần lượt là hình chiếu của I trên
AC, AB, BC
Xét ∆FBI và ∆EBI:
∠FBI=∠IBE(gt)
BI chung
∠BFI=∠IEB=900(gt) =>∆FBI = ∆EBI(g-c-g)
Do đó IF=IE(cạnh tương ứng)
Xét ∆FAI và ∆DAI:
∠FAI=∠IAD(gt)
AI chung
∠AFI=∠IDA=900(gt) =>∆FAI = ∆DAI(g-c-g)
Do đó IF=ID(cạnh tương ứng)
IF=ID;IF=IE =>ID=IE
Xét ∆ECI và ∆DCI:
∠IEC=∠IDC=900(gt)
ID=IE(CMT)
CI chung => ∆ECI = ∆DCI (cạnh huyền -cạnh góc vuông)
Do đó : ∠ECI=∠ICD
=>IC là phân giác góc BCA
Vậy ba đường phân giác trong CI, AI, BI đồng quy tại một diểm
Hình bạn tự vẽ nhé
a) Có xy // mn mà 2 góc yAB và ABn là 2 góc trong cùng phía
=> ^yAB + ^ABn = 180 độ Mà ^ABn = 50 độ
=> ^yAB = 130 độ
Vạy ^AB = 130 độ
b) Có BI là phân giác của ^ABn => ^ABI = 1/2 ^ABn = 50 độ / 2 = 25 độ
Có AI là phân giác của ^yAB => ^BAI = 1/2 ^yAB = 130 độ /2 = 65 độ
=> ^ABI + ^BAI = 90 độ mà ^ABI + ^BAI + ^AIB = 180 độ ( tổng 3 hóc trong 1 tam giác )
=> ^AIB = 90 độ => tam giác BIA vuông tại I (đpcm )
c) Có ^AIB = 90 độ => BI là đường cao tam giác ABC
Mà BI cũng là đường phân giác tam giác ABC
=> tam giác ABC cân tại B ( dâu hiệu nhận biết tam giác cân )
=> AB = BC ( tính chất ) ( đpcm)
Tích cho mk nhoa !!! ~~~
Gọi I là giao của ∠ABC và ∠ACB, gọi D, F, E lần lượt là hình chiếu của I trên
AC, AB, BC
Xét ∆FBI và ∆EBI:
∠FBI=∠IBE(gt)
BI chung
∠BFI=∠IEB=900(gt) =>∆FBI = ∆EBI(g-c-g)
Do đó IF=IE(cạnh tương ứng)
Xét ∆FAI và ∆DAI:
∠FAI=∠IAD(gt)
AI chung
∠AFI=∠IDA=900(gt) =>∆FAI = ∆DAI(g-c-g)
Do đó IF=ID(cạnh tương ứng)
IF=ID;IF=IE =>ID=IE
Xét ∆ECI và ∆DCI:
∠IEC=∠IDC=900(gt)
ID=IE(CMT)
CI chung => ∆ECI = ∆DCI (cạnh huyền -cạnh góc vuông)
Do đó : ∠ECI=∠ICD
=>IC là phân giác góc BCA
Vậy ba đường phân giác trong CI, AI, BI đồng quy tại một diểm