Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi
\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
đề bài là thế này ạ!?
Chứng minh các bất đẳng thức:
a) căn 6 - căn 2 >1
b) căn 5 - căn 3>1/2
c) căn 7 - căn 6 < căn 6 - căn 5
a) \(\frac{\sqrt{110}+\sqrt{70}}{\sqrt{22}+\sqrt{14}}=\frac{\left(\sqrt{11}+\sqrt{7}\right)\sqrt{10}}{\left(\sqrt{11}+\sqrt{7}\right)\sqrt{2}}=\sqrt{5}\)
b) \(\frac{\sqrt{42}-6}{\sqrt{21}-\sqrt{18}}=\frac{\sqrt{42}-\sqrt{36}}{\sqrt{21}-\sqrt{18}}\)
\(=\frac{\left(\sqrt{7}-\sqrt{6}\right)\sqrt{6}}{\left(\sqrt{7}-\sqrt{6}\right)\sqrt{3}}=\sqrt{2}\)
c) \(\frac{\left(a-b\right)\sqrt{a^2-b^2}}{\left(a-b\right)^2}\)
\(=\frac{\sqrt{\left(a-b\right)\left(a+b\right)}}{a-b}\)