Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều phải chứng minh tương đương với
\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\\ \Leftrightarrow\left(a+b-2\sqrt{ab}\right)+\left(b+c-2\sqrt{bc}\right)+\left(c+a-2\sqrt{ca}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
(luôn đúng với mọi a,b,c không âm)
Dấu = xảy ra khi a=b=c >=0
cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
Áp dụng bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)
C/m tương tự \(\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\)
\(\sqrt{a^2+c^2}\ge\frac{a+c}{\sqrt{2}}\)
Cộng 3 vế của 3 bđt trên lại được
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Dấu "=" tại a = b = c = 1/3