K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\)

Ta có :

\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x^4+x^3\right)+\left(x+1\right)}{\left(x^4+x^2\right)-\left(x^3+x\right)+x^2+1}\) \(=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\left(đpcm\right)\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Lời giải:

ĐK....................

a)

\(\frac{a^3-4a^2-a+4}{a^3-7a^3+14a-8}=\frac{(a^3-4a^2)-(a-4)}{(a^3-4a^2)-(3a^2-12a)+(2a-8)}=\frac{a^2(a-4)-(a-4)}{a^2(a-4)-3a(a-4)+2(a-4)}\)

\(=\frac{(a-4)(a^2-1)}{(a-4)(a^2-3a+2)}=\frac{a^2-1}{a^2-3a+2}=\frac{(a-1)(a+1)}{(a-1)(a-2)}=\frac{a+1}{a-2}\) (đpcm)

b)

\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x^4+x^3)+(x+1)}{(x^4+x^2)-(x^3+x)+x^2+1}=\frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}=\frac{(x+1)(x^3+1)}{(x^2+1)(x^2-x+1)}\)

\(=\frac{(x+1)(x+1)(x^2-x+1)}{(x^2+1)(x^2-x+1)}=\frac{(x+1)^2}{x^2+1}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

ĐK....................

a)

\(\frac{a^3-4a^2-a+4}{a^3-7a^3+14a-8}=\frac{(a^3-4a^2)-(a-4)}{(a^3-4a^2)-(3a^2-12a)+(2a-8)}=\frac{a^2(a-4)-(a-4)}{a^2(a-4)-3a(a-4)+2(a-4)}\)

\(=\frac{(a-4)(a^2-1)}{(a-4)(a^2-3a+2)}=\frac{a^2-1}{a^2-3a+2}=\frac{(a-1)(a+1)}{(a-1)(a-2)}=\frac{a+1}{a-2}\) (đpcm)

b)

\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x^4+x^3)+(x+1)}{(x^4+x^2)-(x^3+x)+x^2+1}=\frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}=\frac{(x+1)(x^3+1)}{(x^2+1)(x^2-x+1)}\)

\(=\frac{(x+1)(x+1)(x^2-x+1)}{(x^2+1)(x^2-x+1)}=\frac{(x+1)^2}{x^2+1}\) (đpcm)

6 tháng 7 2016

\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)

Vậy ........

\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)

Vậy........

\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)

\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)

Vậy.......

9 tháng 8 2021

-x^4 hay (-x)^4 cậu nhỉ?

9 tháng 8 2021

Thay x = 1 vào ta được : \(-1+1+1-1=0\)

Vậy x = 1 là nghiệm của đa thức : \(-x^4+x^3+x^2-1\)

Thay x = 1 vào ta được : \(1-2+5-3=1\)

Vậy x = 1 ko là nghiệm của đa thức : \(x^4-2x^3+5x-3\)

16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

24 tháng 6 2018

a) x(2x+1)-x2(x+2)+(x3-x+3)

=2x2+ x- x3-2x2+ x3-x+3

=3

b) x(3x2 -x +5)- ( 2x3 +3x- 16)-x(x2- x+2)

=3x3 - x2 + 5x- 2x3 -3x +16- x3+x2-2x

=16