Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔANG và ΔCND có
\(\widehat{GAN}=\widehat{DCN}\)
NA=NC
\(\widehat{ANG}=\widehat{CND}\)
Do đó: ΔANG=ΔCND
Suy ra: NG=ND
Xét ΔBAC có
BN là đường trung tuyến ứng với cạnh huyền AC
AM là đường trung tuyến ứng với cạnh huyền BC
BN cắt AM tại G
Do đó: G là trọng tâm của ΔBAC
Suy ra: \(BG=\dfrac{2}{3}BN\)
\(\Leftrightarrow NG=ND=\dfrac{1}{3}BN\)
\(\Leftrightarrow BG=GD\)
hay B và D đối xứng nhau qua G
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK