Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
b: Vì ABCD là hình bình hành
nên AC và BD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của BD
hay B và D đối xứng nhau qua O
a: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao và AM là phân giác của \(\widehat{BAC}\)
Xét tứ giác APMQ có
AP//MQ
AQ//MP
Do đó: APMQ là hình bình hành
Hình bình hành APMQ có AM là phân giác của góc PAQ
nên APMQ là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MP//AC
Do đó: P là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MQ//AB
Do đó: Q là trung điểm của AC
Xét ΔABC có
P,Q lần lượt là trung điểm của AB,AC
=>PQ là đường trung bình của ΔABC
=>PQ//BC
c: Xét ΔABC có M,Q lần lượt là trung điểm của CB,CA
=>MQ là đường trung bình của ΔABC
=>MQ//AB và \(MQ=\dfrac{AB}{2}\)
mà \(MQ=\dfrac{MD}{2}\)
nên MD=AB
MQ//AB
=>MD//AB
Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
d: Xét tứ giác AMCD có
Q là trung điểm chung của AC và MD
Do đó: AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
Hình chữ nhật AMCD muốn trở thành hình vuông thì CA là phân giác của góc MCD
=>\(\widehat{ACB}=\dfrac{1}{2}\cdot90^0=45^0\)
a/CM cho PNFC và BNFD là hình bình hành => NF=PC=BD và NF song song PC song song BD
b/ Từ câu a suy ra P,M,D thẳng hàng. PM là đường trung bình của tam giác ABC suy ra PM song song với AC => PD song song với NC => PNCD là hình thang.
c/ Cm cho ANDM là hình bình hành.
Để PNCD là hình thang cân thì CD=PM suy ra AP = BM suy ra AB=BC.
Câu c hình như sai rồi bạn ạ. Phải là AB=BC=CA luôn chứ
Xét ΔANG và ΔCND có
\(\widehat{GAN}=\widehat{DCN}\)
NA=NC
\(\widehat{ANG}=\widehat{CND}\)
Do đó: ΔANG=ΔCND
Suy ra: NG=ND
Xét ΔBAC có
BN là đường trung tuyến ứng với cạnh huyền AC
AM là đường trung tuyến ứng với cạnh huyền BC
BN cắt AM tại G
Do đó: G là trọng tâm của ΔBAC
Suy ra: \(BG=\dfrac{2}{3}BN\)
\(\Leftrightarrow NG=ND=\dfrac{1}{3}BN\)
\(\Leftrightarrow BG=GD\)
hay B và D đối xứng nhau qua G