K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

Giải:

Đặt \(d=UCLN\left(3n+1;2n+1\right)\)

Ta có:

\(3n+1⋮d\)

\(2n+1⋮d\)

\(\Rightarrow2\left(3n+1\right)⋮d\)

\(3\left(2n+1\right)⋮d\)

\(\Rightarrow6n+2⋮d\)

\(6n+3⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=UCLN\left(3n+1;2n+1\right)=1\)

\(\Rightarrow3n+1\) và 2n + 1 là 2 số nguyên tố cùng nhau

Vậy...

 

 

a: Gọi a là UCLN(3n+1;6n+3) 

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

3 tháng 1 2022

                                              Bài giải
 

a: Gọi a là UCLN(3n+1;6n+3) 

⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

23 tháng 12 2021

a) Đặt UCLN (2n+1;2n+3)=d

TC UCLN(2n+1;2n+3)=d

=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)

=>(2n+3)-(2n+1):d

=>2:d

=>d e U(2)={1;2}

Mà 2n+1 lẻ=> d lẻ=>d=1

b) 

Đặt UCLN (2n+5;3n+7)=d

TC UCLN(2n+5;3n+7)=d

=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)

=>(6n+15)-(6n+14):d

=>1:d

=>d=1

phần c bạn tự làm nốt nhé

học tốt nhé

1 tháng 11 2015

c) Gọi d là ƯCLN( 2n+5;3n+7)

Mà 2n+5 chia hết cho d và 3n+7 cũng chia hết cho d

Suy ra: (6n+15) -(6n+14) chia hết cho d

                   1 chia hết cho d

Vậy hai số 2n+5 và 3n+7 là hai số nguyên tố cùng nhau.

24 tháng 11 2015

gọi  UCLN﴾2n + 1 ; 6n + 5﴿ là d 

ta có :

2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d

6n + 5 chia hết cho d

=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d

=>2 chia hết cho d

=> d thuộc Ư﴾2﴿ = {1;2}

Mà 2n + 1 ; 6n + 5 lẻ nên n = 1

=>UCLN(..)=1

=>ntcn

7 tháng 2 2017

tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự

Đặt d= ƯCLN (2n+1, 2n+3)

\(\Rightarrow2n+1⋮d\)\(3n+2⋮d\)

=>\(3\left(2n+1\right)⋮d\)\(2\left(3n+2\right)⋮d\)

\(\Rightarrow6n+3⋮d\)\(6n+4⋮d\)

=>6n+4 - (6n+3) \(⋮d\)

=>\(1⋮d\)

=>d=1

Vậy cặp số trên nguyên tố cùng nhau với mọi STN n

3 tháng 11 2017

2n+3 .Bạn làm 3n+2 rồi