K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

BĐT cần chứng minh \(\Leftrightarrow\frac{\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\le1\)(do \(\sqrt{ab}>0\)nên khi nhân 2 vế của BĐT với \(\frac{1}{\sqrt{ab}}\) chiều của BĐT không thay đổi)

\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)\(\Leftrightarrow\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le1\)

\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)(*)

Áp dụng BĐT Cô-si cho hai số dương \(\frac{c}{b}\)và \(1-\frac{c}{a}\), ta có: \(\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}\right)=\frac{c}{2b}+\frac{1}{2}-\frac{c}{2a}\)

Tương tự, ta có: \(\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le\frac{c}{2a}+\frac{1}{2}-\frac{c}{2b}\)

\(\Rightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le\frac{c}{2b}+\frac{1}{2}-\frac{c}{2a}+\frac{c}{2a}+\frac{1}{2}-\frac{c}{2b}=1\)

\(\Rightarrow\)(*) luôn đúng

Vậy ta có đpcm.

6 tháng 11 2019

mà thôi bt lm rồi

6 tháng 11 2019

batngooaoavuihabucqualeuleu

31 tháng 7 2017

Chứng minh bất đẳng thức mincopxki

31 tháng 7 2017

mincopxki mik chưa nghe qua

18 tháng 1 2016

ap dung bunhiacopski la ra

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)

CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)

Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

(�2+�2)(�2+�2)≥(��+��)2=��+��

CMTT : (�2+�2)(�2+�2)≥��+��

Ta có :(�2+�2)(�2+�2)+(�2+�2)(�2+�2)≥��+��+��+��=(�+�)(�+�)

17 tháng 1 2018

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge2ac+2bd\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

BĐT cuối đúng theo BĐT Bunhiacopski 

Dấu "=" khi \(\frac{a}{c}=\frac{b}{d}\)

b: \(A=\dfrac{x^2+4+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\dfrac{1}{\sqrt{x^2+4}}>=2\sqrt{\sqrt{x^2+4}\cdot\dfrac{1}{\sqrt{x^2+4}}}=2\)

a: =>ab+ad+bc+cd>=ab+cd+2căn abcd

=>ad+cb-2căn abcd>=0

=>(căn ad-căn cb)^2>=0(luôn đúng)